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* Discuss machine learning

* Review examples using microbiological data
« Q&A
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BLUF

The next decade is going to bring enormous changes to the practice of
clinical microbiology because of the maturation of sequencing &
digital imaging tools. Both of these applications require big data
solutions, such as machine learning applications.
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20th Century’s Data Model:

Human realization

Amount of data
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21st Century’s Data Reality:

Human realization

Amount of data
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Objectives :

* Give one definition of “machine learning.”

« Describe how one-way artificial intelligence can be
used in clinical microbiology to improve efficiency.

« Describe how one-way artificial intelligence can be
used in clinical microbiology to improve quality.
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2011-2020

« MALDI for identification of cultured isolates

* Molecular multiplex syndromic panels

R
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2021-2030

* Bigger data

« Better data analysis
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Big Data

“Data sets so large and complex that it becomes difficult to process
using on-hand data management tools or traditional data processing
applications.”

Source: https://www.forbes.com/sites/gilpress/2014/09/03/12-big-data-definitions-whats-yours/
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Big Data

* Image data (photos)
 MALDI data (mass spectra)
» Sequencing data (DNA reads)
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Image Data (Photos)
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Image Source DOI: 10. 1093/ajcp/64 2.271
© 2021 College of American Pathologists. All rights reserved.

Image Source: http://xeroxnostalgia.com/wp-content/uploads/2015/05/Xerox_4000.jpg
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Machine Learning

“Machine learning is a current application of
artificial intelligence based around the idea
that we should really just be able to give
machines access to data and let them learn
for themselves.”

—Bernard Marr

Source: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-
difference-between-artificial intelligence-and-machine-learning/
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Nugent Scored Gram Stains
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FIG 2 Preprocessing for test sets B (a) and C (b). (c) Three typical edge expansion methods used for panel b, image ii.

Source: DOI: 10.1128/JCM.02236-20
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TABLE 3 Limit of detection data for the five runs

Dilution

Dilution series 1

Technologist

Model

MNeat

1:1

1:2

1:4

1:8

1:16

1:32

1:64

1:128

1:256

Giardia duodenalis,

1+ Blastocystis sp.

Giardia duodenalis,

1+ Blastocystis sp.

Giardia duodenalis,

1+ Blastocystis sp.

Giardia duodenalis,

1+ Blastocystis sp.

Giardia duodenalis,

1+ Blastocystis sp.

Negative
Negative
Negative
Negative

Negative

Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Giardia duodenalis,
1+ Blastocystis sp.
Negative“

Giardia duodenalis,
1+ Blastocystis sp.

Giardia duodenalis,
1+ Blastocystis sp.

9 ncomplete scan.

Source: DOI: 10.1128/JCM.02053-19




MALDI Data (Mass Spectra)
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MALDI-TOF Mass Spectrometry
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Machine Learning

“Machine learning is a current application of
artificial intelligence based around the idea
that we should really just be able to give
machines access to data and let them learn
for themselves.”

—Bernard Marr

Source: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-
difference-between-artificial intelligence-and-machine-learning/
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MALDI-TOF MS

194 Acinetobacter baumannii isolates

Training Set N = 97 Test Set
N =97

Resistant N = 46
Susceptible N = 51
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Training Set Vote Fraction Distribution
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Training Set Vote Fraction Distribution
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Training Set Vote Fraction Distribution

Vote Fractions for Carbapenem Resistance
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Training Set Vote Fraction Distribution
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Training Set Vote Fraction Distribution
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MALDI-TOF MS

194 Acinetobacter baumannii isolates

Training Set N = 97 Test Set
N =97

Resistant N = 46
Susceptible N = 51
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MALDI-TOF MS

Test Set
N=97
|
| | |
Prediction Resistant (23) Susceptible (19) Indeterminate (55)

Accuracy Correct (20) Correct (19) Resistant (29)

Incorrect (3) Incorrect (0) Susceptible (26)
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MALDI-TOF MS

Test Set
N=97

Indeterminate (55)

Prediction Resistant (23) Susceptible (19)

Accura cy Correct (20) Correct (19)
Incorrect (3) Incorrect (0)

Resistant (29)
Susceptible (26)

Conclusion: The machine learning model was able to Hannah Wang, MD

classify almost half of A. baumannii isolates as
carbapenem susceptible or resistant with 93% accuracy
and no very major errors using only mass spectral data.
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Sequencing Data (DNA Reads)
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Cost per Raw Megabase of DNA Sequence
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Whole Genome Sequencing

« Strain typing (clonality assessment)

https://www.cdc.gov/amd/how-it-works/detecting-outbreaks-wgs.html
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Whole Genome Sequencing

« Strain typing (clonality assessment)

» Detection of mutations or acquired genes associated with resistance

* Machine learning to predict resistance...

© 2021 College of American Pathologists. All rights reserved.



Machine Learning

“Machine learning is a current application of
artificial intelligence based around the idea
that we should really just be able to give
machines access to data and let them learn
for themselves.”

—Bernard Marr

Source: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-
difference-between-artificial intelligence-and-machine-learning/

© 2021 College of American Pathologists. All rights reserved.



Whole Genome Sequencing

BACTERIOLOGY

SOCIETY FOR

é amcan  [Journal of
microsiotocy CliNical MiCI’ObiO'Ogy® ’.)

Check for
updates

Using Machine Learning To Predict Antimicrobial MICs and
Associated Genomic Features for Nontyphoidal Salmonella

Marcus Nguyen,2b* (©'S, Wesley Long,<d Patrick F. McDermott,® Randall J. Olsen,<¢ Robert Olson,>t* Rick L. Stevens,b*
Gregory H. Tyson,® Shaohua Zhao,® James J. Davis2-b*

aUniversity of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, lllinois, LSA
EComputing, Environment and Life Sciences, Argonne National Laboratory, Argonne, lllinois, USA

=Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute
and Houston Methodist Hospital, Houston, Texas, USA

dDepartment of Pathology and Labaoratory Medicine, Weill Cornell Medical College, Mew York, Mew York, USA
#U.5. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA

‘Department of Computer Science, University of Chicago, Chicago, lllinois, USA

Source: DOI: 10.1128/JCM.01260-18
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Whole Genome Sequencing

5,278 nontyphoidal Salmonella genomes, [...] was
used to generate [...] machine learning models for
predicting MICs for 15 antibiotics. The MIC prediction
models had an overall average accuracy of 95% |[...]
The model predicted MICs with no a priori information
about the underlying gene content or resistance
phenotypes of the strains.”
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2021-2030

* Bigger data

« Better data analysis

Today, we already have the data.

Tomorrow, we need to develop better analysis tools.
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CAP Pathologist Informatics Education

Informatics Case-Based Education (ICBE/ICBE1)
* New for 2022

Educates pathologists on common issues encountered in

practice, including:

- Software implementations
- Test ordering issues

- Regulatory compliance

- Data security

Appropriate for medical directors and/or staff pathologists

Created by pathologists for pathologists

* 4 cases annually; each case offers 1 CME credit
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