

COLLEGE of AMERICAN PATHOLOGISTS

Cancer Immunotherapy

Progress & Challenges on the Journey to Cure Cancer

PHC Webinar Series Eric Walk MD, FCAP

November 3, 2021

Webinar Host

- This series is sponsored by the Personalized Healthcare Committee (PHC)
- Today's webinar host is Jinjuan Yao, MD, PhD, FCAP

Housekeeping

 This presentation will be recorded. The recording and PDF will go out to all registrants in one week

All lines are muted during the presentation

 Please send in your questions as you think of them via the "Question Box" in your control panel

Eric Walk MD, FCAP

- Graduate of Johns Hopkins University and holds a MD degree from the University of Virginia School of Medicine.
- Board certified in Anatomic and Clinical Pathology and is a Fellow of the College of American Pathologists (CAP). He currently is a member of the CAP Personalized Healthcare Committee.
- Chief Medical Officer at PathAl in Boston, MA and head of the medical group, overseeing Medical Affairs, Regulatory Affairs, and Clinical Affairs. He has over 20 years of experience in precision medicine, oncology drug development and IVD companion diagnostics development.

Disclaimer

- The CAP does not permit reproduction of any substantial portion of the material in this Webinar without its written authorization. The CAP hereby authorizes attendees of the CAP Webinar to use the PDF presentation solely for educational purposes within their own institutions. The CAP prohibits use of the material in the Webinar – and any unauthorized use of the CAP's name or logo – in connection with promotional efforts by marketers of laboratory equipment, reagents, materials, or services.
- Opinions expressed by the speaker are the speaker's own and do not necessarily reflect an endorsement by the CAP of any organizations, equipment, reagents, materials, or services used by participating laboratories.

Disclosures

- I am a full-time employee and equity owner of PathAI
- I am a shareholder of Roche

Learning Objectives

- 1. Awareness of the latest cancer immunotherapy clinical data including FDA approvals/changes and combination therapy data.
- 2. Familiarity with current cancer immunotherapy biomarkers such as PD-L1, MMR/MSI and TMB, as well as emerging biomarkers and technologies such as the microbiome and machine learning.
- **3.** Awareness of future cancer immunotherapy targets/compounds such as anti-TIGIT and anti-LAG3 including the latest clinical data and the predictive biomarkers being explored.

Cancer Immunotherapy A revolution in-progress

THE WALL STREET JOURNAL.

Home World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ. Magazine

Trump Moves Ratchet Up Pressure

Puerto Rican Businesses Struggle o Restart

Immunotherapy Treatments for Cancer Gain Momentum

In recent case, woman with metastatic breast cancer is cancer-free after infusion of immune cells at National Institute

By Thomas M. Burton

Oct. 12, 2017 12:19 p.m. ET

The science of using immunotherapy to treat cancer is advancing rapidly, marked by the National Cancer Institute's recent disclosure that a metastatic breast-cancer patient is now cancer-free, regulators' expected approval of a major lymphoma treatment this fall and the unveiling Thursday of a partnership between government researchers and drugmaker

"[After immunotherapy] ... they didn't find any cancer at all."

FACT OF THE DAY

[After immunotherapy] .. they didn't find any cancer at all."

JIMMY CARTER Former U.S. President

Metastatic Melanoma Response to Ipilimumab

Before Ipilimumab 04/22/11

After Ipilimumab 08/05/11

http://www.slideshare.net/roblyngold/community-oncology-clinical-debates-advanced-melanoma

© College of American Pathologists. Case by Antoni Ribas, MD, PhD.

Unique Kinetics of Response in Patients Treated With Ipilimumab

Screening

Week 16: Continued Improvement

Week 72: Complete Remission

Week 12: Improved

Week 108: Complete **Remission**

© College of American Pathologists.

Cancer Immunotherapy Patient: Jeff and His Wife Linda Diffuse large B-cell lymphoma treated with CAR-T therapy

Jeff's Journey

- Tx: R-CHOP
- 2018: recurrence
- Tx: Kymriah CAR-T
- (FDG PET) in 5 days
- No detectable CD19 cells

2012: dx w/ stage 4 DLBCL

Complete metabolic response

Ipilimumab Long-term Outcome Data in Metastatic Melanoma *Durable overall survival benefit* @ 10 years is unprecedented

Schadendorf et al. JCO 2015

20% survival @ 10 years. Cure?

Cancer Immunotherapy Long-term Outcome Data

Nivolumab + Ipilimumab 6.5-year outcome data in 1L advanced melanoma Pembrolizumab vs chemo 5-year outcome data in 1L NSCLC

> Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score \geq 50%

CheckMate 067 6.5-Yr Follow-up: OS

Phase III KEYNOTE-024

Wolchok, ASCO 2021, Abstr 9506

The Cancer Immunity Cycle

Cytotoxic T-cell killing of cancer cells as the final common pathway

CD8+ cytotoxic T-cell (green) killing a cancer cell (purple/blue)

© College of American Pathologists.

Chen DS, Mellman I. Immunity. 2013

Regulation of T-cell Activation via 'Checkpoints' *Balancing activating and inhibitory signals*

Activating interactions

Inhibitory interactions

Cancer Immunotherapy Clinical Activity *Broad clinical activity across multiple cancer types*

Cancer Type	FDA Approval
Melanoma	Yes
Lung cancer	Yes
Renal cell cancer	Yes
Bladder cancer	Yes
Head and neck cancer	Yes
Hodgkin lymphoma	Yes
Non-Hodgkin lymphoma	Yes
Merkel cell carcinoma	Yes
MSI/TMB-high solid tumors	Yes
Triple-negative breast cancer	Yes
Hepatocellular carcinoma	Yes
Gastric cancer	Yes
Colorectal cancer	Yes
Cervical cancer	Yes
Endometrial cancer	Yes
Esophageal cancer	Yes (3/23/2021)

© College of American Pathologists.

Walk et. al Arch Pathol Lab Med-Vol 144, June 2020

16

Adjuvant Immune Oncology Approvals Bring Survival Benefits to Earlier Stages of Disease

October 15th, 2021

U.S. FOOD & DRUG FDA

FDA approves atezolizumab as adjuvant treatment for non-small cell lung cancer

Therapy	Indication	Line of therapy	Trial result	FDA approval	CDx
Tecentriq (atezolizumab)	NSCLC stage II-IIIA	Adjuvant	HR=0.66 DFS in PD-L1≥1% (IMpower010 Ph3)	10/15/21	PD-L1 (SP263) IHC
Opdivo (nivolumab)	Urothelial ca resected high-risk	Adjuvant	HR=0.7 DFS (CheckMate- 274 Ph3)	8/20/21	None
KEYTRUDA (pembrolizumab) + CT	Triple-negative breast cancer	Neo-adjuvant & adjuvant	HR=0.63 EFS pCR 63% vs. 56% (KEYNOTE-522 Ph3)	7/26/21	None
Opdivo (nivolumab)	Esophageal/GEJ cancer, resected	Adjuvant	HR=0.69 DFS (CheckMate- 577 Ph3)	5/20/21	None
KEYTRUDA (pembrolizumab)	Melanoma	Adjuvant	HR=0.57 RFS (KEYNOTE- 054 Ph3)	2/15/19	None
Opdivo (nivolumab)	Melanoma w/LN involvement	Adjuvant	HR=0.65 RFS (CheckMate- 238 Ph3)	12/20/17	None

© College of American Pathologists.

www.fda.gov/drugs/resources-information-approved-drugs

Recent IO Accelerated Approval Withdrawals Based on failure of confirmatory studies

March 11, 2021

U.S. FOOD & DRUG ADMINISTRATION

FDA In Brief: FDA Oncologic Drugs Advisory **Committee to Review Status of Six Indications Granted Accelerated Approval**

"We are committed to ensuring the integrity of the accelerated approval program, which is designed to bring safe and effective drugs to patients with unmet medical needs as quickly as **possible**. The program allows the FDA to approve a drug or biologic product intended to treat a serious or life-threatening condition based on an outcome that can be measured earlier than survival that demonstrates a meaningful advantage over available therapies. However, when confirmatory trials do not confirm clinical benefit, a reevaluation must be performed to determine if the approval should be withdrawn.

https://www.fda.gov/news-events/fda-brief/fda-brief-fda-oncologic-drugs-advisory-committee-reviewstatus-six-indications-granted-accelerated

Anti-PD-(L)1 drugs with accelerated US approvals and failed confirmatory trials								
Drug (company)	Indication	Failed potentially confirmatory trial(s)	Regulatory outcome	Advanced potentially confirmatory trials remaining?				
	Urothelial bladder cancer (2L/1L)	Keynote-361 (1L)	US label narrowed 3 Jul 2018	Keynote-676 (BCG combo in non-muscle invasive bladder cancer)				
Keytruda	Liver cancer (2L)	Keynote-240 (2L)	None	Keynote-394 (2nd-line Asian patients)				
(Merck & Co)	Gastric/GEJ adenocarcinoma (3L)	Keynote-061 (2L) & 062 (1L, inconclusive)	None	Keynote-585 (neoadjuvant/adjuvant chemo combo)				
	SCLC (3L)	Keynote-604 (1L)	Withdrawn 1 Mar 2021	No				
Tecentriq	Urothelial bladder cancer (1L)	Imvigor-211 (2L)	US label narrowed 3 Jul 2018; withdrawn 8 Mar 2021	lmvigor-130 final readout				
(Roche)	TNBC (1L)	Impassion-131 (1L)	US indication withdrawn 8/27/21	Impassion-132 (note OS benefit in Impassion-130 not statistically tested)				
Opdivo (BMS)	Liver cancer (2L)	Checkmate- 459 (1L)	None	Checkmate-9DX (adjuvant)				
Optivo (BIN3)	SCLC (3L)	Checkmate-331 (2L) & 451 (1L)	Withdrawn 29 Dec 2020	No				
Imfinzi (Astrazeneca)	Urothelial bladder cancer (2L)	Danube (1L, tremelimumab combo)	Withdrawn 22 Feb 2021	Nile (tremelimumab combo)				

Source: company information.

https://www.evaluate.com/vantage/articles/news/policy-and-regulation/us-fda-gets-tough

PD-L1 Expression and Response Rate to Checkpoint Inhibition

Increased response rate vs. unselected patients across multiple cohorts

	Ninoumab S	Nivolumer, NEM Tumors	Nivoluna 2013 ma	MpD1 3280 2013	MDU 3800 10 1000 10000000000000000000000000	MDD1 Sorial at Melanona Sorial at as Mo	Dembron ECC 2013	Chembroi en Change Meisnon	MDDL 32804 BY	Benbroizing 2014
N=	42	44	34	94	30	53	113	129	64	55
Response ra	tes	•	•	•	•	•	•	•		•
Unselected	21%	32%	29%	22%	23%	23%	40%	19%	26%	18%
PD-L1 +	36%	67%	44%	39%	27%	46%	49%	37%	43%	46%
PD-L1 -	0%	19%	17%	13%	20%	15%	13%	11%	11%	11%

© College of American Pathologists. Adapted from Margaret Callahan, ASCO 2014

FDA-approved PD-L1 Companion Diagnostic Assays Multiple antibody clones approved across indications

TABLE 1. Summary of US	TABLE 1. Summary of US Food and Drug Administration–Approved PD-L1 Assays and Associated Scoring Algorithms							
Assay	Dako PD-L1 IHC 28-8 pharmDx Assay ⁵¹	Dako PD-L1 IHC 22C3 pharmDx Assay ⁵³	Ventana PD-L1 (SP142) Assay ⁵²					
For use with (drug)	Nivolumab ± ipilimumab (Bristol Myers Squibb)	Pembrolizumab (Merck)	Atezolizumab (Roche or Genentech)					
Manufacturer	Dako ^a	Dako ^a	Ventana ^b					
Approved PD-L1 scoring algorithm(s)	% TC	TPS, ^c CPS ^d	% IC, % TC, or % IC $^{\rm e}$					
Approval status and cutoffs	Companion 1L NSCLC: $\geq 1\%^{g}$ Complementary 2L NSQ NSCLC: $\geq 1\%$, $\geq 5\%$, $\geq 10\%$ 2L SCCHN: $\geq 1\%$ 2L UC: $\geq 1\%$	Companion 1L or 2L NSCLC: TPS $\geq 1\%$ 1L UC: CPS ≥ 10 3L+ gastric or GEJ: CPS ≥ 1 2L+ CC: CPS ≥ 1 2L+ ESCC: CPS ≥ 10 1L SCCHN: CPS ≥ 10 1L TNBC: CPS ≥ 10	Companion 1L UC ^h : \geq 5% IC 1L TNBC: \geq 1% IC 1L NSCLC: \geq 50% TC or \geq 10% IC Complementary 2L NSCLC: \geq 50% TC or \geq 10% IC					

Prince et al. Analytical Concordance of PD-L1 Assays Utilizing Antibodies From FDA-Approved Diagnostics in Advanced Cancers: A Systematic Literature Review. JCO Precis Oncol 5:953-973.

Ventana PD-L1 (SP263) Assay⁷³

Durvalumab (AstraZeneca)

Ventana^b

% TC or % IC^f

Complementaryⁱ 2L UC: > 25% TC or ICP > 1% and $IC+ \ge 25\%$ or ICP = 1% and IC + = 100%

PD-L1 Immunohistochemistry (IHC) Expression on both tumor and immune cells

Doroshow et al. Nature Reviews Clinical Oncology 2021

×100% (for 22C3 or SP263)

 $\times 100\%$ (for SP142)

 $\times 100\%$ (for SP142)

×100 (for 22C3)

3 November 2021

21

Clinical Use of PD-L1 IHC Assays Has Become Very Complex

40 different disease indications with various clone, scoring system, and cut-off combinations

Last Updated Sept 2021

PD-L1 (Immune Checkpoint Inhibitors) Ordering Guide

ACL Laboratories / Great Lakes Pathologists

Drug and Tumor Types	ORDER THIS AB/TEST	Scoring system	Cut Off Values	Test Type	Treatment Settings	Studies
Pembroluzimab (KEYTRUDA) - PD-1 inhibi	itor	•		•		•
Non-Small Cell Lung Cancer (NSCLC)	22C3	TPS	>1% = Expression; >50% = High Expression *	Companion	Multiple * NO SCORE NEEDED WITH CARBOPLATIN OR PEMETREXED & PLATINUM - KEYNOTE-021 & 407	KEYNOTE-010, 024, 042, 048, 189
Esophageal Squamous Cell Carcinoma	22C3	CPS	>10 = Expression *	Companion	Recurrent, locally advanced or metastatic * NO SCORE NEEDED IF WITH PLATINUM OR FU	KEYNOTE-181
Breast Carcinoma (Triple Negative)	22C3	CPS	>10 = Expression	Companion	Locally recurrent, unresectable or metastatic TNBC	KEYNOTE-355
Gastric or GEJ Carcinomas	22C3	CPS	>1 = Expression *	Companion	Recurrent, locally advanced or metastatic * NO SCORE NEEDED FOR GEI IF WITH PLATINUM OR FU	KEYNOTE-059, 590 (181 with SCC)
Cervical cancer (SCC or adenocarcinoma)	22C3	CPS	>1 = Expression	Companion	Recurrent or metastatic with disease progression on or after chemotherapy	KEYNOTE-158
Head and Neck Squamous Cell Carcinoma	22C3	CPS	>1 = Expression	Companion	Unresectable/ mets * NO SCORE NEEDED WITH PLATINUM & FU OR PROGRESSION WITH PLATINUM	KEYNOTE-040, 048
Any MSI/MMR deficient tumors	MMR (IHC)	Intact / Def	Deficient MMR or MSI-H	N/A	Tumor progression following Rx with no satisfactory alternative treatment options	KEYNOTE-012, 016, 028, 158, 164
Tumor Mutation Burden-High	Foundation1	TMB	>10 mut/Mb	Companion	Adult and pediatric unresectable or metastatic tumors TMB-H	KEYNOTE-158
Primary Mediastinal Large B-Cell Lymphoma	Testi	ing Not Indicat	ed - scoring not evaluated in studies (most of these tumors	s express)	Refractory disease	KEYNOTE-013 and 170
Urothelial Carcinoma (including NMIBC)					Locally advanced / mets not eligible for Platinum or tumor progression / NMIBC with no cystectomy	KEYNOTE-052, 361, and 045
Hodgkin Lymphoma (Classical type)	I				Refractory disease	KEYNOTE-087
Endometrial Carcinoma (Not MSI-H/dMMR)	I				With Lenvatinib if progression following systemic therapy & not candidates for surgery or XRT	KEYNOTE-146
Melanoma	I				Unresectable or metastatic; adjuvant use if positive nodes	KEYNOTE-001, 002, 006, 054
Small Cell Lung Cancer	Te Te	esting Not Indi	cated - status not predictive of response or not studied in s	tudies	Tumor progression after 2 lines of therapy	KEYNOTE-028 and 158
Hepatocellular Carcinoma					Previously treated with Sorafenib (KeyNote 240 showed not effective)	KEYNOTE-224 and 240
Merkel Cell Carcinoma	Ī				Recurrent, locally advanced or metastatic with no prior systemic Rx	KEYNOTE-017
Renal Cell Carcinoma	I				Combination with axitinib, for first-line treatment with advanced RCC	KEYNOTE-426
Cutaneous SCC					Recurrent or metastatic that is unresectable or not curable with radiation	KEYNOTE-629
Cemiplimab-rwlc (LIBTAYO) - PD-1 inhibito	or					
Non-small Cell Lung Cancer (NSCLC)	22C3	TPS	>50% = Expression	Companion	First-line locally advanced or metastatic; Only patients with TPS ≥ 50% were eligible	EMPOWER-Lung 1
Cutaneous SCC & BCC			Testing Not Indicated		SCC = Locally advanced or mets BCC = locally advanced or mets after hedgehog inh or cannot take	EMPOWER-CSCC1 & BCC1
Atezolizumab (TECENTRIQ) - PD-L1 inhibit	or					
Non-small Cell Lung Cancer (NSCLC)	SP142	TC & IC	>50% Tumor cells (TC) or >10% Immune Cells (IC) *	Companion	First-line mets * NO SCORE NEEDED IF WITH BEVA, PACL, CARBO OR PROGRESSION AFTER PLATINUM	IMpower 110, 150, POPLAR, OAK
Urothelial Carcinoma	SP142	IC	>5% tumor-infiltrating immune cells (IC) *	Companion	Locally advanced or metastatic * NO SCORE NEEDED IF NOT ELIGIBLE FOR PLATINUM	IMvigor130
Small Cell Lung Cancer					Extensive SCLC - use with Carbo/Etop	IMpower 133
Hepatocellular carcinoma	Testing Not Indicated - status not predictive of response or not studied in studies				Unresectable or metastatic HCC with no prior systemic therapy - combo with Bevacizumab	IMbrave150
Melanoma					BRAF V600 mutation unresectable or metastatic - combo with Cobimetinib and Vemurafenib	IMspire150
Nivolumab (OPDIVO) - PD-1 inhibitor						
Non-small Cell Lung Cancer (NSCLC)	28-8	TPS	>1% = Expression *	Companion	First-line in mets with YERVOY * NO SCORE NEEDED WITH YERVOY & PLAT OR PROGRESS AFTER PLAT	CheckMate-227
Colorectal Adenocarcinoma	MMR(IHC)	Intact / Def	Deficient MMR or MSI-H	N/A	With or without Yervoy	CheckMate-142
Esophageal SCC					Unresectable, recurrent, or metastatic after fluoropyrimidine- and platinum	CheckMate-577
Gastric, GEJ and Esophageal Adenocarcinoma	I				Advanced or metastatic - treat along with chemotherapy (fluorpyrimidine and platinum-based)	CheckMate-649
Mesothelioma	Ι				Untreated, unresectable, treat with Yervoy	CheckMate-743
Renal Cell Carcinoma	Ι				Advanced or unresectable, with Yervoy or Cabozantinib or received anti-aniogenic	CheckMate-214, 9Er
Urothelial Carcinoma	Te	esting Not Indi	cated - status not predictive of response or not studied in s	tudies	High risk of recurrence after resction regardless of neoadj, nodal involvement or PD-L1 score	CheckMate-032 and 275
Head and Neck Squamous Cell Carcinoma	I				Recurrent or metastatic with progression and platinum	CheckMate-141
Melanoma	Ι				Unresectable or metastatic; adjuvant use if positive nodes; with Ipilimumab (YERVOY)	CheckMate-0671, 067 and 238
Hepatocellular Carcinoma					Previously treated with Sorafenib, as single agent or with Yervoy	CheckMate-040
Hodgkin Lymphoma (Classic type)					Refractory disease	CheckMate-039 and 205
Durvalumab (IMFINZI) - PD-L1 inhibitor						
Non-Small Cell Lung Cancer (NSCLC)	SP263	TC	≥1% = Expression	Complementary	Unresectable Stage III after CRT; adjuvant (respond better if TC >1%)	PACIFIC
Small cell lung cancer	Te	esting Not Indi	cated - status not predictive of response or not studied in s	tudies	With etoposide or carbo/cis	CASPIAN
Dostarlimab (JEMPERLI) - PD-1 inhibitor						
Solid Tumors and Endometrial Carcinoma	MMR (IHC)	Intact / Def	Deficient MMR (by Roche IHC stains)	Companion	Recurrent or advanced disease	GARNET
Avelumab (BAVENCIO) - PD-L1 inhibitor		•				
Renal Cell Carcinoma	SP263	TPS	≥1% = Expression	Complementary	First-line therapy with axitinib with advanced RCC	JAVELIN Renal 101
Urothelial Carcinoma	T	antina Matthe		and to a	First-line maintenance therapy with advanced disease that has not progressed on platinum-based	JAVELIN Bladder 100
Merkel Cell Carcinoma	16	esting Not India	tated - status not predictive of response or not studied in s	cudies	Metastatic	JAVELIN Merkel 200
Ipilimumab (YERVOY) - CTLA-4 inhibitor						
Mesothelioma	28-8	TPS	≥1% = Expression	Complementary	Untreated, unresectable, treat with Yervoy	CheckMate-743
Melanoma, RCC, Colorectal, NSCLC, and HCC		Test	ting Not Indicated - status not predictive of response		Combination therapy with Opdivo	See Opdivo
Testing Not Indicated = No good cut offs or scoring system since t	rials didn't measure P	PD-L1 in these tumor	s, didn't randomized based on results or may not have found the scores to be pr	edictive of response; may	Reasons listed for not studying score - often expected scant sampling due to FNA/biopsy type, low PD-L1 expression on this	tumor cell type, or prior studies showed no response
still test to help assess response if requested based on score (ex Impower 133)						

Frank Zuehl, MD franklin.zuehl@aah.org

> Courtesy Dr. Frank Zuehl – St. Luke's Hospital, Milwaukee, WI

PD-L1 IHC Clone Analytic Comparisons

Journal of Thoracic Oncology

IASLC

ORIGINAL ARTICLE TRANSLATIONAL ONCOLOGY | VOLUME 13, ISSUE 9, P1302-1311, SEPTEMBER 01, 2018

PD-L1 Immunohistochemistry Comparability Study in Real-Life Clinical Samples: Results of Blueprint Phase 2 Project

Ming Sound Tsao, MD • Keith M. Kerr, MD • Mark Kockx, MD, PhD • ... Melania Pintilie, MSc • Yasushi Yatabe, MD, PhD • Fred R. Hirsch, MD, PhD & M • Show all authors

Open Archive Published: May 22, 2018 DOI: https://doi.org/10.1016/j.jtho.2018.05.013

- 81 lung cancer specimens
- 5 PD-L1 assays: 22C3, 28-8, SP142, SP263, 73-10
- Highly comparable staining by the 22C3, 28-8 and SP263 assays
- Less sensitivity with the SP142 assay
- Higher sensitivity with the 73-10 assay to detect **PD-L1** expression on TCs.

© College of American Pathologists.

Research

JAMA Oncology | Original Investigation

A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

David L. Rimm, MD, PhD; Gang Han, PhD; Janis M. Taube, MD; Eunhee S. Yi, MD; Julia A. Bridge, MD; Douglas B. Flieder, MD; Robert Homer, MD, PhD; William W. West, MD; Hong Wu, MD; Anja C. Roden, MD; Junya Fujimoto, MD; Hui Yu, MD; Robert Anders, MD; Ashley Kowalewski, MS; Christopher Rivard, PhD; Jamaal Rehman, MD; Cory Batenchuk, PhD; Virginia Burns, PhD; Fred R. Hirsch, MD, PhD; Ignacio I. Wistuba, MD, PhD

JAMA Oncology August 2017 Volume 3, Number 8

- 90 archival NSCLC samples
- 4 PD-L1 assays: 22C3, 28-8, SP142, E1L3N
- Scores from the 28-8 and E1L3N were not significantly • different but that the 22c3 test showed a slight but statistically significant reduction in labeling of PD-L1 expression in tumor cells.
- SP142 antibody is an outlier that detected significantly less PD-L1 expression in tumor cells and immune cells.

ONCOLOGY RESEARCH PROGRAM Collaborative research to cure cance

3 November 2021

23

PD-L1 IHC Clone Analytic Comparisons

Case

Journal of Thoracic Oncology

IASLC

ORIGINAL ARTICLE TRANSLATIONAL ONCOLOGY | VOLUME 13, ISSUE 9, P1302-1311, SEPTEMBER 01, 2018

PD-L1 Immunohistochemistry Comparability Study in Real-Life Clinical Samples: Results of Blueprint Phase 2 Project

Ming Sound Tsao, MD • Keith M. Kerr, MD • Mark Kockx, MD, PhD • ... Melania Pintilie, MSc • Yasushi Yatabe, MD, PhD • Fred R. Hirsch, MD, PhD <u>& P</u> • Show all authors

Open Archive • Published: May 22, 2018 • DOI: https://doi.org/10.1016/j.jtho.2018.05.013 •

Research

University of the second secon

JAMA Oncology | Original Investigation

A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

David L. Rimm, MD, PhD; Gang Han, PhD; Janis M. Taube, MD; Eunhee S. Yi, MD; Julia A. Bridge, MD; Douglas B. Flieder, MD; Robert Homer, MD, PhD; William W. West, MD; Hong Wu, MD; Anja C. Roden, MD; Junya Fujimoto, MD; Hui Yu, MD; Robert Anders, MD; Ashley Kowalewski, MS; Christopher Rivard, PhD; Jamaal Rehman, MD; Cory Batenchuk, PhD; Virginia Burns, PhD; Fred R. Hirsch, MD, PhD; Ignacio I. Wistuba, MD, PhD

JAMA Oncology August 2017 Volume 3, Number 8

NATIONAL COMPREHENSIVE CANCER NETWORK

PD-L1 IHC Scoring Reproducibility

ORIGINAL ARTICLE TRANSLATIONAL ONCOLOGY | VOLUME 13, ISSUE 9, P1302-1311, SEPTEMBER 01, 2018

PD-L1 Immunohistochemistry Comparability Study in Real-Life Clinical Samples: Results of Blueprint Phase 2 Project

Ming Sound Tsao, MD • Keith M. Kerr, MD • Mark Kockx, MD, PhD • ... Melania Pintilie, MSc • Yasushi Yatabe, MD, PhD • Fred R. Hirsch, MD, PhD R 🗵 • Show all authors

Open Archive
Published: May 22, 2018
DOI: https://doi.org/10.1016/j.jtho.2018.05.013

Reliability (Fleiss κ statistics) of Scoring PD-L1 Expression

Immune cells

Research

Histol Myers Squibb

JAMA Oncology | Original Investigation

A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

David L. Rimm, MD, PhD; Gang Han, PhD; Janis M. Taube, MD; Eunhee S. Yi, MD; Julia A. Bridge, MD; Douglas B. Flieder, MD; Robert Homer, MD, PhD; William W. West, MD; Hong Wu, MD; Anja C. Roden, MD; Junya Fujimoto, MD; Hui Yu, MD; Robert Anders, MD; Ashley Kowalewski, MS; Christopher Rivard, PhD; Jamaal Rehman, MD; Cory Batenchuk, PhD; Virginia Burns, PhD; Fred R. Hirsch, MD, PhD; Ignacio I. Wistuba, MD, PhD

JAMA Oncology August 2017 Volume 3, Number 8

Table 2. ICC for the Pathologist Scores and Concordance Statistics

	Antibody, ICC (95% CI)						
Cells ^a	22c3	28-8	SP142				
Tumor cells	0.882 (0.873-0.891)	0.832 (0.820-0.844)	0.869 (0.859-0.879)				
Immune cells	0.207 (0.190-0.226)	0.172 (0.156-0.189)	0.185 (0.169-0.203)				

Abbreviation: ICC, intraclass correlation coefficient.

^a N = 90.

Cells ^a	E1L3N	Summary, Mean (SD)
Tumor cells	0.859 (0.849-0.869)	0.86 (0.02)
Immune cells	0.229 (0.211-0.248)	0.19 (0.03)

© College of American Pathologists.

Comparison of PD-L1 Clones with Clinical Endpoints

BARCELONA

Performance of PD-L1 immunohistochemistry assays in unresectable locally advanced or metastatic triple-negative breast cancer: post hoc analysis of IMpassion130

Hope S. Rugo,¹ Sherene Loi,² Sylvia Adams,³ Peter Schmid,⁴ Andreas Schneeweiss,⁵ Carlos H. Barrios,⁶ Hiroji Iwata,⁷ Véronique Diéras,⁸ Eric P. Winer,⁹ Mark M. Kockx,¹⁰ Dieter Peeters,¹⁰ Stephen Y. Chui,¹¹ Jennifer C. Lin,¹¹ Anh Nguyen Duc,¹¹ Giuseppe Viale,¹² Luciana Molinero,¹¹ Leisha A. Emens¹³

¹University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA; ²Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; 3NYU Langone Medical Center, New York, NY, USA; 4Barts Cancer Institute, Queen Mary University London, London, UK; 5University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany; ⁶Centro de Pesquisa Clínica, HSL, PUCRS, Porto Alegre, Brazil; ⁷Aichi Cancer Center Hospital, Nagoya, Japan; 8Department of Medical Oncology, Centre Eugène Marquis, Rennes, France; 9Dana-Farber Cancer Institute, Boston, MA, USA; 10HistoGeneX NV. Antwerp, Belgium; 11Genentech, Inc., South San Francisco, CA, USA; 12University of Milan, European Institute of Oncology IRCCS, Milan Italy; 13University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA

Rugo et al. ESMO 2019.

- IMpassion130: Phase III accelerated approval study of atezolizumab + nabpaclitaxel vs. placebo + nab-paclitaxel in mTNBC.
- Exploratory post hoc sub-study: SP142, 22C3 and SP263 PD-L1 IHC assays were evaluated for PD-L1 prevalence, analytical concordance and estimates of clinical activity.
- The US indication for atezolizumab was subsequently withdrawn based on IMpassion 131 study results.

NPA, negative percentage agreement; OPA, overall percentage agreement; PPA, positive percentage agreement.

a > 97% of SP142+ samples included in 22C3+ or SP263+ samples. b Compared with 41% in ITT (Schmid, New Engl J Med 2018).

 $c \ge 90\%$ OPA, PPA and NPA required for analytical concordance.

3 November 2021 27

Rugo et al. ESMO 2019.

Clinical outcomes in PD-L1+ populations

HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS.

HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS.

HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS.

PD-L1 IHC Clones: Analytic vs. Clinical Comparisons

- In the post hoc exploratory biomarker sub-study of the IMpassion130 trial:
 - The analytical concordance of SP142, 22C3 and SP263 were subpar (< 90%). 0
 - The assays are not equivalent with overall percentage agreements (OPA) of 64% (22C3 vs. SP142) and 69% Ο (SP263 vs. SP142).
 - The clinical benefit in 22C3+ and SP263+ subgroups was driven by the SP142+ subgroup. 0
- This data represents a post hoc exploratory analysis of a single trial with a single therapy and indication combination.
- While analytic clone comparison data is useful, more clinical comparison data is needed to enable optimal decision making for patients.

3 November 2021 31

Why do PD-L1 Negative Patients Respond to PD-(L)1 Inhibition? Up to 20% response rate in PD-L1-negative population

	Vivolunab Solis	Windung Mc M 2022	Nicolunab Me	MoD , 45CO 2013 Herbsr 280, 55.	MoD132804 M.	Mpolister NSCO 2013 Sorial et 21 NSCO 2013	Denter C 2013 Denter C 2013	Penbrolizumak	Mo0133804 8100	Central ASCO 2014
N=	42	44	34	94	30	53	113	129	64	55
Response ra	tes									
Unselected	21%	32%	29%	22%	23%	23%	40%	19%	26%	18%
			•		•		•			
PD-L1 +	36%	67%	44%	39%	27%	46%	49%	37%	43%	46%
PD-L1 -	0%	19%	17%	13%	20%	15%	13%	11%	11%	11%

Intratumoral Heterogeneity of PD-L1 Expression in NSCLC 48% PD-L1 discordance between biopsy and resection

In all cases, the biopsy specimens underestimated the PD-L1 status observed on the whole tissue sample. The discrepancies were mainly related to the lack of a PD-L1-positive IC component in matched biopsies.

© College of America

Illie et al. Annals of Oncology 2015

PD-L1 Expression in NSCLC: Heterogeneity by Pathologic Types, Tissue Sampling and Metastasis

- 1,002 NSCLC samples stained with PD-L1 22C3 and scored w/TPS
- Discordance
 - **Biopsy vs. resection: 31.4% (11/35)** Ο
 - Primary tumor vs. LN mets: 28.6% (14/49) Ο
 - Cell blocks vs. biopsy: 11.1% (6/54) 0
 - Different FFPE blocks from same case: 35.8% (19/53) Ο

© College of American Pathologists.

Shen et al. Thorac Dis 2021;13(7):4360-4370

Block A

PD-L1 negative

(TPS <1%)

Block B

Digital Quantification of PD-L1 Expression

Abstract 2017: Association of digital and manual quantification of tumor PD-L1 expression with outcomes in nivolumab-treated patients

Chunzhe Duan, Michael Montalto, George Lee, Dimple Pandya, Daniel Cohen, Han Chang, Hao Tang, Nishant Agrawal, Hunter Elliott, Benjamin Glass, Ilan Wapinski, Robin Edwards, Andrew H. Beck, and Vipul Baxi

DOI: 10.1158/1538-7445.AM2020-2017 Published August 2020 🗷 Check for updates

	Evoluable	Prevalence	e, n (%)	Additional samples	Additional samples
	samples, n	Digital	Manual	digital only, n (%) ^a	manual only, n (%)
		≥ 1% PD-L1+ TCs			
CheckMate 275 (UC)	241	166 (69)	113 (47)	58 (24)	5 (2)
CheckMate 067 (MEL)	264	173 (66)	160 (61)	36 (14)	23 (9)
CheckMate 238 (MEL)	377	307 (81)	259 (69)	66 (18)	18 (5)
		≥ 5% PD-L1+ TCs			
CheckMate 275 (UC)	241	90 (37)	74 (31)	28 (12)	12 (5)
CheckMate 067 (MEL)	264	103 (39)	76 (29)	36 (14)	9 (3)
CheckMate 238 (MEL)	377	234 (62)	139 (37)	104 (28)	9 (2)

CheckMate 238: Digital vs Manual Scoring

© College of American Pathologists.

Duan et al., Association of digital and manual quantification of tumor PD-L1 expression with outcomes in nivolumab-treated patients. Poster presented at AACR 2020

Cancer Immunotherapy Challenges Why do only ~20% of patients benefit?

© College of American Pathologists.

Schadendorf et al. JCO 2015

No benefit in 80% of patients
Tumor and Host Factors Favoring Immune Responsiveness Cancer Immunogram - Schumacher et al.

Blank, Haanen, Ribas, Schumacher – Science 2016.

Tumor and Host Factors Favoring Immune Responsiveness Cancer Immunogram - Schumacher et al.

Blank, Haanen, Ribas, Schumacher – Science 2016.

General Immune Status & Infiltration Understanding the root causes of immune oases vs deserts

© College of American Pathologists. Hegde, et al. Clin Cancer Res 2016

Non-inflamed

Proliferating Tumors/ Low Class I

Prognostic Significance of Immune Infiltration Status in NSCLC >1 cold region associated with significantly higher risk of relapse

medicine

LETTERS

https://doi.org/10.1038/s41591-020-0900-

Geospatial immune variability illuminates differential evolution of lung adenocarcinoma

Khalid AbdulJabbar^{©1,2,53}, Shan E. Ahmed Raza^{©1,2,53}, Rachel Rosenthal^{3,4}, Mariam Jamal-Hanjani^{3,5}, Selvaraju Veeriah^{3,4}, Ayse Akarca⁶, Tom Lund⁷, David A. Moore^{3,6}, Roberto Salgado^{8,9}, Maise Al Bakir⁴, Luis Zapata^{1,2}, Crispin T. Hiley^{3,4}, Leah Officer¹⁰, Marco Sereno¹¹, Claire Rachel Smith¹, Sherene Loi⁹, Allan Hackshaw¹, Teresa Marafioti⁶, Sergio A. Quezada¹, Nicholas McGranahan^{® 3,14}, John Le Quesne^{10,11,15}, TRACERx Consortium*, Charles Swanton^{® 3,4,5,54} and Yinvin Yuan^{1,2,54}

Independent of:

- Total # regions sampled
- **Tumor size**
- Stage

Tumor Mutational Burden (TMB) – Surrogate of Tumor Foreignness *Higher mutational load increases probability of immunogenic neo-antigens*

The prevalence of somatic mutations across human cancer types.

© College of American Pathologists.

LB Alexandrov et al. Nature 000, 1-7 (2013) doi:10.1038/nature12477

43

Tumor Mutational Burden (TMB) Predictive or Prognostic?

REVIEW

PFS

The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): a systematic review and meta-analysis of randomized controlled trials

A. Galvano^{1†}, V. Gristina^{1†}, U. Malapelle², P. Pisapia², F. Pepe², N. Barraco¹, M. Castiglia¹, A. Perez¹, C. Rolfo³, G. Troncone², A. Russo^{1*} & V. Bazan⁴

¹Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo; ²Department of Public Health, University Federico II of Naples, Naples, Italy; ³Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA; ⁴Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy

Table 2. Clinical outcomes measures stratified according to tissue TMB status								
Study	ORR (TMB-high) <i>n</i> (%)	ORR (TMB-low) <i>n</i> (%)	PFS (TMB-high) HR (95% CI)	PFS (TMB-low) HR (95% Cl)	OS (TMB-high) HR (95% Cl)	OS (TMB-low) HR (95% CI)		
KEYNOTE-042 ²⁸	62/180 (34.4) versus 51/ 165 (30.9)	44/234 (18.8) versus 48/ 214 (22.4)	0.75 (0.59-0.95)	1.27 (1.04-1.55)	0.62 (0.48-0.80)	1.09 (0.88-1.36)		
CheckMate 227 part 1^{31} - 2^{10}	63/139 (45.3) versus 43/ 160 (26.9)	N.A.	0.58 (0.43-0.77)	1.07 (0.84-1.35)	0.68 (0.51-0.91)	0.75 (0.59-0.94)		
CheckMate 026 ¹³	N.A.	N.A.	0.62 (0.38-1.00)	1.82 (1.30-2.55)	1.1 (0.64-1.88)	0.99 (0.71-1.4)		
MYSTIC ³² tissue D + T versus CT	N.A.	N.A.	0.97 (0.63-1.49)	1.98 (1.42-2.78)	0.72 (0.48-1-09)	1.39 (1.00-1.92)		
MYSTIC ³² tissue D versus CT	N.A.	N.A.	0.86 (0.55-1.33)	1.49 (1.95-2-13)	0.70 (0.47-1.06)	1.26 (0.90-1.77)		
MYSTIC ³² blood D +	31/64 (48.4) versus 15/ 70 (21.4)	34/204 (16.7) versus 58/ 185 (31.4)	0.53 (0.34-0.81)	1.55 (1.23-1.94)	0.49 (0.32-0.74)	1.16 (0.93-1.45)		
MYSTIC ³² blood D versus CT	23/77 (29.9) versus 15/ 70 (21.4)	43/209 (20.6) versus 58/ 185 (31.4)	0.77 (0.52-1.13)	1.19 (0.94-1.50)	0.72 (0.50-1.05)	0.93 (0.74-1.16)		
IMpower110 ³³	N.A.	N.A.	0.55 (0.33-0.92)	1.00 (0.78-1.29)	0.75 (0.41-1.35)	1.07 (0.77-1.47)		

Cl, confidence interval; CT, platinum-based chemotherapy; D, durvalumab; HR, hazard ratio; N.A., not available; ORR, overall response rate; OS, overall survival; PFS, progressic free survival; T, tremelimumab; TMB, tumor mutational burden

				TMB	-High			TM	B-Low		
	Study or Subaroup	Hazard Ratio IV. Fixed, 95% CI		Hazard IV. Fixed.	Ratio 95% CI			Hazaro IV. Rando	d Ratio om. 95% Cl		IV
	CheckMate-026	0.62 (0.38-1.01)						,	-		
	CheckMate-227 IMpower 110	0.58 (0.43-0.78) 0.55 (0.33-0.92)						-	-		
FS	KEYNOTE-042	0.75 (0.59-0.95)		-							
	MYSTIC - D versus CT blood MYSTIC - D versus CT issue	0.77 (0.52-1.14) 0.86 (0.55-1.34)									
	MYSTIC - D+T versus CT blood MYSTIC - D+T versus CT issue	0.53 (0.34-0.82)			_						
	Total (95% CI)	0.69 (0.61-0.79)		•	1		F	-1	٠	1	
© College of Ameri	can Pathologists.	0.	.01 0.	1 1 IO	10 CT	100	0.01	0.1 IO	1 î CT	10 10	00

Galvano et al. ESMO Open. 2021 Jun;6(3):100124.

```
Hazard Ratio
, Random, 95% CI
1.82 (1.30-2.55)
 1.07 (0.84-1.36)
1.00 (0.78-1.29)
1.27 (1.04-1.55)
1.19 (0.94-1.50)
 1.49 (1.42-1.56)
1.55 (1.23-1.95)
 1.98 (1.42-2.77)
 1.36 (1.19-1.56)
```

Tumor Mutational Burden (TMB) Predictive or Prognostic?

- TMB-high patients showed a remarkable effect in ORR (data not shown) and a statistically significant benefit in PFS ۲ along with an unprecedented OS improvement compared with those patients featuring a low-TMB status.
- A possible predictive role of high TMB for IO regimens could be inferred given the ORR and PFS benefit favoring CT vs ۲ IO in the TMB-low subgroup
- TMB may act as a predictive biomarker in addition to PD-L1 expression for the selection of the most appropriate patients treated with ICIs in the first-line management of advanced non-oncogene-addicted NSCLC.

OS

Hazard Ratio IV, Random, 95% CI 0.90 (0.64-1.27) 0.75 (0.59-0.95) 1.07 (0.77-1.48) 1.09 (0.88-1.35) 0.93 (0.74-1.16) 1.26 (0.90-1.77) 1.16 (0.93-1.45) 1.39 (1.00-1.92) 1.04 (0.90-1.19)

MMR/MSI Status - Surrogate of Tumor Foreignness Status correlates with immune infiltration

CD8+, PD-L1+ T-cells Present at Invasive Front of dMMR/MSI but Not pMMR/MSS Colon Cancer

© College of American Pathologists. Llosa, Pardoll, Cancer Discovery 2015

Pembrolizumab for MSI-high/dMMR and TMB-High Cancers

1st tumor agnostic FDA approvals

FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication [dMMR or MSI-H solid tumors]

May 23, 2017

Home / Drugs / Development & Approval Process | Drugs / Drug Approvals and Databases

FDA approves pembrolizumab for adults and children with TMB-H solid tumors

🎔 Tweet 🛛 in Linkedin 🛛 🔄 Email 🔒 Print f Share

June 16, 2020

The NEW ENGLAND JOURNAL of MEDICINE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

Table 2. Objective Responses According to RECIS	Noncolorectal Cancer 1	Īvnes			
Mismatch Repair–Deficient Colorectal Cancer				Ampullary or cholangiocarcinoma	
Type of Response	(N=10)	(N=18)	(N=7)	Endometrial	2
Objective response rate (95% CI) — %	40 (12–74)	0 (0–19)	71 (29–96)	Small bowel	2
Disease control rate (95% CI) — %§	90 (55–100)	11 (1-35)	71 (29–96)	Gastric	1
				3 Novembe	ar 2021 47

Le et al. N Engl J Med 372;26 2015

FDA Approval of Foundation One CDx TMB

Approval Date: October 23, 2020

FDA U.S. FOOD & DRUG ADMINISTRATION

FoundationOne® CDx - P170019/S017

FoundationOne CDx (F1CDx) is a laboratory test designed to detect genetic variations in 324 genes. F1CDx is a companion diagnostic that has been approved for the detection of genetic mutations in patients who may benefit from one of twenty-three FDA-approved therapies for non-small cell lung cancer, melanoma, breast cancer, colorectal cancer, ovarian cancer, cholangiocarcinoma, prostate cancer, and TMB for solid tumors.

Therapeutic Efficacy Results

Response Evaluation	TMB >=10 mut/Mb			Т	TMB <10 mut/Mb		
		(N=1	02)		(N=688)		
	n	%	95% CI [†]	n	%	95% CI [†]	
Complete Response (CR)	4	3.9	(1.1, 9.7)	11	1.6	(0.8, 2.8)	
Partial Response (PR)	26	25.5	(17.4, 35.1)	32	4.7	(3.2, 6.5)	
Objective Response (CR+PR)	30	29.4	(20.8, 39.3)	43	6.3	(4.6, 8.3)	
Stable Disease (SD)	14	13.7	(7.7, 22.0)	227	33.0	(29.5, 36.6)	
Non-CR/Non-PD (NN)	0	0.0	(0.0, 3.6)	3	0.4	(0.1, 1.3)	
Progressive Disease (PD)	48	47.1	(37.1, 57.2)	349	50.7	(46.9, 54.5)	
Non-evaluable (NE)	1	1.0	(0.0, 5.3)	13	1.9	(1.0, 3.2)	
No Assessment	9	8.8	(4.1, 16.1)	53	7.7	(5.8, 10.0)	
Central radiology assessed responses per RECIST 1.1 (confirmed) are included in this table.							

Based on binomial exact confidence interval method.

'No Assessment' (NA) counts subjects who had a baseline assessment evaluated by the central radiology assessment but no post-baseline assessment on the data cutoff date including missing, discontinuing or death before the first post-baseline scan. Subjects with unknown TMB status are not included. (Database Cutoff Date: 27JUN2019).

Table 10. Overall TMB concordance summary (weighted average)

TMB Cut-off	Overall PPA (95% CI)	(
10 mut/Mb	87.28%	
	(64.42%, 96.17%)	(85

© College of American Pathologists.

https://www.fda.gov/medical-devices/recently-approved-devices/foundationoner-cdx-p170019s017

MMR CDx FDA approved to identify endometrial cancer patients eligible for JEMPERLI (dostarlimab-gxly) anti-PD1

- 23Apr2021: Dostarlimab (Jemperli) was granted accelerated approval for the 2nd line treatment of patients with recurrent or advanced deficient mismatch repair (dMMR) endometrial cancer based on an FDA-approved test.
- In 103 patients with dMMR tumors, the • objective response rate was 44.7%, made up of 11 CRs and 35 PRs (ESMO 2020 updated results)
- 26Apr2021 FDA approved the VENTANA MMR **RxDx** Panel, an IHC CDx for dostarlimab

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grantsaccelerated-approval-dostarlimab-gxly-dmmr-endometrial-cancer © College of American Pathologists.

VENTANA MMR RxDx Panel

igure 1: VENTANA anti-MLH1 (M1) Mouse Monoclonal Primary Antibody staining with Intact (left) or Loss (right) of expression in the presence of evaluable internal controls in endometrial carcinoma tissu

ANA anti-MSH2 (G219-1129) Mouse Monoclonal Primary Antibody staining with Intact (left) or Loss (right) of expression in the presence of evaluable internal controls in endometrial carcinoma tissue

carcinoma tissue

MSH6

Figure 2: VENTANA anti-MSH6 (SP93) Rabbit Monoclonal Primary Antibody staining with Intact (left) or Loss (right) of expression in the presence of evaluable internal controls in endometrial

PMS2

Figure 4: VENTANA anti-PMS2 (A16-4) Rabbit Monoclonal Primary Antibody staining with Intact (left) or Loss (right) of expression in the presence of evaluable internal controls in endometrial

> 49 3 November 2021

Clinical Grade Detection of MSI in CRC by Deep Learning AUROC 0.96 using 6,406 patient international training cohort

© College of American Pathologists. Echle et al. Gastroenterology 2020;159:1406–1416

Microbiome as a Cancer Immunotherapy Biomarker Gut flora diversity and composition predicts response to immunotherapy

- **Baseline stool samples from metastatic** melanoma patients analyzed (RNAseq, DNAseq, qPCR) before immunotherapy treatment for selected bacteria.
- Significant association was observed between commensal microbial composition and clinical response.
- **Bacterial species more abundant in responders** included Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium
- **Results suggest that the commensal** microbiome may have a mechanistic impact on antitumor immunity in human cancer patients

CANCER IMMUNOTHERAPY

The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients

Vyara Matson,^{1*} Jessica Fessler,^{1*} Riyue Bao,^{2,3*} Tara Chongsuwat,⁴ Yuanyuan Zha,⁴ Maria-Luisa Alegre,⁴ Jason J. Luke,⁴ Thomas F. Gajewski^{1,4}+

Matson et al., Science 359, 104–108 (2018)

CANCER IMMUNOTHERAPY

The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients

Vyara Matson,¹* Jessica Fessler,¹* Rivue Bao,^{2,3}* Tara Chongsuwat,⁴ Yuanyuan Zha,⁴

5 January 2018

3 November 2021 51

Deep Learning Algorithms to Predict CIT Response AUC .707 for anti-PD-1/CTLA-4 response/progression in advanced melanoma

CLINICAL CANCER RESEARCH | PRECISION MEDICINE AND IMAGING

Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma 🕰 🗈

Paul Johannet¹, Nicolas Coudray^{2,3}, Douglas M. Donnelly⁴, George Jour⁵, Irineu Illa-Bochaca⁴, Yuhe Xia⁶, Douglas B. Johnson⁷, Lee Wheless⁸, James R. Patrinely⁷, Sofia Nomikou⁵, David L. Rimm⁹, Anna C. Pavlick¹⁰, Jeffrey S. Weber¹⁰, Judy Zhong⁶, Aristotelis Tsirigos^{2,5}, and Iman Osman⁴

NYU training dataset – 5-fold cross validation

	Patients		S	lides	Tiles	
	POD	Respons	POD Respons		POD	Respons
		е		е		е
Set 0	18	7	46	24	163,393	93,197
Set 1	15	18	30	26	155,720	71,662
Set 2	19	10	46	22	151,400	100,470
Set 3	10	4	36	14	193,583	106,325
Set 4	16	4	42	16	161,686	67,730
Total	78	43	200	102	825,782	439,384

POD = Progression Of Disease

© College of American Pathologists.

Clin Cancer Res; 27(1) January 1, 2021 ¹Diggs et al. 2017

- CNN+Clin data sensitivity / specificity comparable to PD-L1 IHC
 - 22C3 (1% cutoff): 80% sensitivity / 60% specificity for pembrolizumab ORR
 - 28-8 (5% cutoff): 58% sensitivity / 49% specificity for nivolumab monotherapy¹ ORR \cap
 - 28-8 (5% cutoff): 57% sensitivity / 54% specificity for ipilimumab+nivolumab¹ ORR 0

Conclusions: Histology slides and patients' clinicodemographic characteristics are readily available through standard of care and have the potential to predict ICI treatment outcomes. With prospective validation, we believe our approach has potential for integration into clinical practice.

DCNN + Clinical data (Vanderbilt Aperio AT2) Strata + High risk + Low risk

Sensitivity: 74% Specificity: 80%

Time (days)

1.000

Resistance to Checkpoint Inhibitors Loss of tumor associated neoantigens via LOH in NSCLC

© College of American Pathologists. Anagnostou, Velculescu - Cancer Discovery 2017

Resistance Via Reduced Tumor Sensitivity to Immune Effectors Inactivating JAK 1/2 mutations abolish INFy signaling, causing resistance to pembrolizumab in melanoma

0.0

Maximum Response

JAK1 of Mutati Ó503% ٩. 200 400 Amino Acid

Baseline cell line M420 15.0-STAT 12.5 Log₂ RNA Counts after IFN Gamma Exposure **TAP1/2** IDO] 10.0-ICAM1 HLA-DOB PD-L1 PSMB 10/9/8 7.5 CXCL 9/10/11 5.0 Upregulation of INF stimulated genes 2.5 0.0-

5.0

2.5

© College of American Pa Zaretsky, Ribas NEJM 2016

Log₂ RNA Counts before IFN Gamma Exposure

7.5

10.0

12.5

15.0

3 November 2021 54

Cancer Immunotherapy of Tomorrow Aspires to Cure *Expand long-term survival benefit to more patients with combo Rx*

Illustrative KM curve for overall survival

- Combination Immunotherapy
- Personalized Immunotherapy
- Next Generation Immunotherapy

2015+

Combination Immunotherapy

Combining Immunotherapy With Other Therapies Which combinations for which patients?

3 November 2021 56

Next Wave of Cancer Immunotherapy Targets *TIGIT & LAG-3 are inhibitory immune checkpoints*

© College of American Pathologists.

https://www.miltenyibiotec.com/LV-en/applications/flow-cytometry-applications/immune-checkpoint-analysis.html

TIGIT Immunobiology and Function

T cell immunoreceptor with immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibitory motif) domain

- TIGIT is upregulated/expressed by immune cells, including activated T cells, natural killer cells, and regulatory T cells.
- TIGIT binds to two ligands, CD155 (PVR) and CD112 ٠ (PVRL2, nectin-2), that are expressed by tumor cells and antigen-presenting cells in the tumor microenvironment.
- **TIGIT** pathway regulates T cell-mediated (adaptive) and natural killer cell-mediated (innate) tumor recognition in vivo and in vitro.
- In cancer, TIGIT is coexpressed with PD-1 on tumor antigen-specific CD8+ T cells and CD8+ tumorinfiltrating lymphocytes (TILs)

3 November 2021

59

Regulation of T/NK-cell via TIGIT-PVR Axis

Differential affinity 'switching' of immunosuppression vs. cytotoxicity/immune effector

Gorvel et al. F1000Research 2020, 9(F1000 Faculty Rev):354

PVR/CD155: Polio Virus Receptor

Nectin-2

TIGIT

CD96

DNAM-1 **CD226**

Receptor/ligand Affinity:

higher

lower

Anti-TIGIT Monoclonal Antibody Mechanism of Action Sequestration of TIGIT away from PVR-CD226 synapse

Anti-TIGIT Fc:FcyR interaction may sequester TIGIT away from the synapse, and play a role in reprogramming of myeloid cells

© College of American Pathologists. Dahan Cancer Cell 2015

NK: natural killer cell; Fc: Fragment crystallizable region

3 November 2021 61

Anti-TIGIT Programs in Clinical Development

Most in phase I with tiragolumab in phase III

Programme	Company	Phase	Cancer type	Notes
Tiragolumab (MTIG7192A; RG6058)	Genentech/Roche	III	Adv or met NSCLC	Cityscape Phase II <u>promising results</u> combo at ASCO 20. 500 patient <u>Skys</u> (NSCLC) and 400 patient <u>SS-02</u> (SCL ongoing, <u>expected</u> filing date 2022 a
AB154	<u>Arcus Bioscience</u>	II	Adv NSCLC	150 patient <u>Phase II study</u> monother combination (anti-PD-1 mAb), started
MK-7684	Merck	II	Solid cancers Melanoma	Various subset studies, with c 90 pat Keynote <u>01A</u> and <u>02B</u> , ongoing
BMS-986207	<u>Bristol-Myers Squibb</u>	1/11	Solid tumours Mult myeloma	170 patient <u>Phase I/II study</u> mono & 104 patient <u>Phase I/II study</u> combo,
Etigilimab (OMP-313M32)	Mereo Biopharma	I	Adv or Met solid cancers	33 patient <u>dose escalation study</u> , cor
ASP8374	<u>Astellas Pharma,</u> <u>Potenza Therapeutics</u>	I	Adv solid cancers	363 patient <u>Phase Ib</u> monotherapy & study, estimated completion Q321
EOS-448	Iteos Therapeutics	I	Solid cancers	30 patient <u>open label study</u> , started (
BGB-A1217	<u>Beigene</u>	Ι	Adv solid cancers	39 patient <u>open label study</u> in combi tislelizumab (anti-PD1), estimated co
IBI-939	<u>Innovent</u>	I	Adv solid cancers	270 patient <u>dose escalation study</u> , st
COM902	<u>Compugen</u>	I	Solid cancers	45 patient open label study, started (
Comment Excelence of	a traditional and a Table to a Distance		a dura a di Martina di	

Source: Evaluate, clinicaltrials.gov, Trinity Delta Note: Adv = advanced, Met = metastatic

© College of American Pathologists.

https://www.trinitydelta.org/wp-content/uploads/2020/09/Mereo-BioPharma-Outlook-020920.pdf

in Tecentriq <u>scraper-01</u> .C). Both and 2023+. rapy &

d Q220

tients each, of

combo, ongoing start Q320

mpleted Q219

combination

Q220

ination with

mpletion Q221

tarted Q220

Q220

CITYSCAPE rPh II: Tiragolumab plus Tecentriq in 1L Stage IV NSCLC Updated ORR analysis with 10.9 months median follow-up

Consistent and clinically meaningful overall response rate (ORR), mainly driven by the PD-L1 high population (TPS>50%)

© College of American Pathologists. Follow-up data cut-off: 02 December; 2019; ITT=intention-to-treat; TPS=tumor proportion score

Rodriguez-Abreu. ASCO 2020. Abstr 9503.

3 November 2021

CITYSCAPE rPh II: Tiragolumab plus Tecentriq in 1L Stage IV NSCLC Updated PFS analysis with 10.9 months median follow-up

Consistent and clinically meaningful PFS at longer follow-up with greater magnitude of improvement in the PD-L1 high population

© College of American Pathologists

Follow-up data cut-off: 02 December; 2019; NE = Non-evaluable; PFS = progression free survival; ITT=intention-to-treat; TPS=tumor proportion score *unstratified HR

3 November 2021 64

TIGIT Immunohistochemistry

Expression of the immune checkpoint receptor TIGIT in Hodgkin's lymphoma

- Dianova mouse anti-TIGIT, clone TG-1,1:70
- **Detected with the DAB-kit (DAKO, Santa Clara, United States)**
- All analyzed cases (40) of HL contained 9–99% (median: 86%) of TIGIT+ lymphoid cells.
- TIGIT localized to the same cells as PD-1
- **Expression levels of TIGIT and PD-1 were highly** variable among the analyzed samples. Highest levels of TIGIT and PD-1 were found in one sample of nodular lymphocytic-predominant HL (NLPHL)
- **Results encourage further studies evaluating** the role of TIGIT as a target for immunotherapies in Hodgkin's lymphoma

LRCHL

NLPHL

Li et al. Expression of the immune checkpoint receptor TIGIT in Hodgkin's lymphoma. BMC Cancer 2018

TIGIT

LAG-3 (Lymphocyte Activation Gene-3) Immune biology and mechanism

- Type I transmembrane protein w/well established role in the negative regulation of T cell function
- Extracellular region has 4 lg-like domains w/20% identity with CD4
- **Binds MHC class II molecules with high affinity; some** ٠ cancers express MHC class II (e.g. melanoma)
- Not expressed on naive T cells, but can be induced on CD4+ ٠ and CD8+ T cells upon antigen stimulation.
- Also expressed on Tregs; inhibition of LAG3 has been shown to inhibit the suppressive activity of Treg cells.
- **Pre-clinical synergy of LAG-3 and PD1 blockade led to** clinical investigation

© College of American Pathologists. Nguyen et al. Nature Reviews Immunology Jan 2015 v15

3 November 2021

66

Soluble form of LAG-3 *Not the intended target of anti-LAG3 molecules*

- LAG3 also encodes an alternative splice variant that is translated to a soluble form of LAG3, which exhibits immune adjuvant activity
- The soluble form of LAG3 binds MHC class II molecules in 'lipid raft' micro-domains on a minor subset of APCs
- Evidence that sLAG3 has clinical importance in vivo, as overall survival is improved in patients with breast cancer who have higher levels of sLAG3 at the time of diagnosis compared with patients who have lower levels

Nguyen et al. Nature Reviews Immunology Jan 2015 v15

16 Pharma LAG-3 Programs by Development Phase *Most molecules in phase I/II with relatlimab and tebotelimab in phase III*

© College of American Pathologists.

https://scrip.pharmaintelligence.informa.com/SC144491/ASCO-Offers-Glimpse-Of-LAG-3-Inhibitors-Potential-Opportunities--And-Limitations

Pharma LAG-3 Programs by Indication

Broad array of disease areas being explored

© College of American Pathologists.

https://scrip.pharmaintelligence.informa.com/SC144491/ASCO-Offers-Glimpse-Of-LAG-3-Inhibitors-Potential-Opportunities--And-Limitations

LAG-3 Inhibitor Data @ ASCO 2021

Broad array of disease areas being explored

LAG-3/PD-(L)1 combo	Sponsors/partners	Phase	Disease	Number of patients	Results
relatlimab/Opdivo	BMS	11/111	advanced melanoma	714	Median PFS months vs 4 for Opdivo a
relatlimab/Opdivo	MD Anderson	11	neoadjuvant and adjuvant melanoma	30	ORR 57%, 1 90%, 1-year 1-year OS 9
fianlimab/Libtayo	Regeneron	I	advanced melanoma	48	ORR 63.6%, PFS not rea
favezelimab/Keytruda	Merck & Co.		colorectal cancer	80	ORR 6.3%
eftilagimod alpha/Keytruda	Immutep/Merck & Co.	П	non-small cell lung cancer and head and neck cancer	73	ORR 41.7% 29.7% in HN
eftilagimod alpha/Bavencio	Immutep/Pfizer/Merck KGaA	I	solid tumors	12	DCR 50%

PFS = progression-free survival; EFS = event-free survival; RFS = relapse-free survival; OS = overall survival; ORR = objective response rate; DCR = disease control rate

Sources: ASCO, company reports

© College of American Pathologists.

https://scrip.pharmaintelligence.informa.com/SC144491/ASCO-Offers-Glimpse-Of-LAG-3-Inhibitors-Potential-Opportunities--And-Limitations

3 10.1 4.6 months alone

-year EFS RFS 93%, 95%

median ched

in NSCLC, NSCC

Relatlimab (RELA) + nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase 3 results from RELATIVITY-047 (CA224-047)

Evan J. Lipson,¹ Hussein A. Tawbi,² Dirk Schadendorf,³ Paolo A. Ascierto,⁴ Luis Matamala,⁵ Erika Castillo Gutiérrez,⁶ Piotr Rutkowski,⁷ Helen J. Gogas,⁸ Christopher D. Lao,⁹ Juliana Janoski De Menezes,¹⁰ Stéphane Dalle,¹¹ Ana Arance,¹² Jean-Jacques Grob,¹³ Shivani Srivastava,¹⁴ Mena Abaskharoun,¹⁴ Katy L. Simonsen,¹⁴ Bin Li,¹⁴ Georgina V. Long,^{a,15} F. Stephen Hodi^{a,16}

¹Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³University Hospital Essen, Essen, Germany; ⁴Istituto Nazionale Tumori Fondazione "G. Pascale", Napoli, Italy; ⁵Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile; ⁶FAICIC Clinical Research, Veracruz, Mexico; ⁷Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ⁸National and Kapodistrian University of Athens, Athens, Greece; ⁹University of Michigan, Ann Arbor, MI, USA; ¹⁰Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ¹¹Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France; ¹²Hospital Clinic Barcelona, Barcelona, Spain; ¹³Aix-Marseille University, CHU Timone, Marseille, France; ¹⁴Bristol Myers Squibb, Princeton, NJ, USA; ¹⁵Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, Australia; ¹⁶Dana-Farber Cancer Institute, Boston, MA, USA ^aCo-senior author

Study design

• **RELATIVITY-047** is a global, randomized, double-blind, phase 2/3 study

AJCC, American Joint Committee on Cancer; BICR, blinded independent central review; CTLA-4, cytotoxic T lymphocyte antigen-4; ECOG PS, Eastern Cooperative Oncology Group performance status; IHC, immunohistochemistry; IV, intravenous; ORR, overall response rate; Q4W, every 4 weeks; R, randomization.

ClinicalTrials.gov: NCT03470922; Lipson E, et al. Poster presentation at ESMO Congress; October 19-23, 2018; Munich, Germany. Abstract 1302TiP.

^aPrior adjuvant/neoadjuvant treatment permitted (anti-PD-1 or anti-CTLA-4 permitted if at least 6 months between the last dose and recurrence; interferon therapy permitted if the last dose was at least 6 weeks before randomization); ^bLAG-3 expression on immune cells was determined using an analytically validated IHC assay (LabCorp); ^cPD-L1 expression on tumor cells was determined using the validated Agilent/Dako PD-L1 IHC 28-8 pharmDx test; ^dFirst tumor assessment (RECIST v1.1) performed 12 weeks after randomization, every 8 weeks up to 52 weeks, and then every 12 weeks. Database lock date: March 9, 2021.

RELATIVITY-047

Primary endpoint PFS by BICR^d

Secondary endpoints

• ORR by BICR^d

RELATIVITY 047 demonstrated superior PFS benefit by BICR for RELA + NIVO FDC vs NIVO

CI, confidence interval; HR, hazard ratio.

All randomized patients. Statistical model for HR and P value: stratified Cox proportional hazard model and stratified log-rank test. Stratified by LAG-3 (\geq 1% vs < 1%), BRAF (mutation positive vs mutation wild-type), AJCC M stage (M0/M1any[0] vs M1any[1]). PD-L1 was removed from stratification because it led to subgroups with < 10 patients.

RELATIVITY-047

PFS by LAG-3 expression

PFS benefit favored RELA + NIVO FDC regardless of LAG-3 expression status

LAG-3 expression \ge 1%

RELATIVITY-047

LAG-3 expression < 1%

RELA + NIVO (n = 87)	NIVO (n = 90)				
4.83	2.79				
(2.86-10.05) (2.79-4.63)					
0.78 (0.54-1.15)					

Benchmarking Relativity-047 Data *Similar mPFS with lower toxicity*

Cross-trial comparison in 1st-line melanoma							
Regimen	Opdivo	Opdivo + Yervoy	Opdivo + relatlimab				
Study	Checkmate-066	Checkmate-067	Relativity-047				
mPFS	5.1mth	11.5mth	10.1mth				
12-mth PFS	43.0%	50.0%	47.7%				
ORR	42% (20% CR)	58% (22% CR)	Not given				
TRAE	74.3%	96.0%	81.1%				
Gr3-4 TRAE	11.7%	59.0%	18.9%				
Source: Asco. NEJM & prescribing information.							

© College of American Pathologists.

https://https://www.evaluate.com/vantage/articles/events/conferences/asco-2021-bristols-lag3-case-replacement-yervoy-And-Limitations
LAG-3 Immunohistochemistry

TNBC Study: Intact Mismatch Repair and Partial Co-Expression of PD-L1 and LAG-3

- LAG-3 (clone D2G40, dilution 1:150; Cell Signaling Technology, MA, USA)
- LAG-3 defined as positive when there were intra tumoral and peri-tumor stromal lymphocytes with any immunoreactivity in ≥1% of the entire tumoral area.
- 20 LAG-3+ cases (27.0%, 20/74), all of which were PD-L1+
- **Co-expression of PD-L1 and LAG-3 was** noted in 46.5% (20/43) of the PD-L1+ population

© College of American Pathologists

Wu et al. Triple-Negative Breast Cancer: Intact Mismatch Repair and Partial Co-Expression of PD-L1 and LAG-3, Frontier Immunology 24 Feb 2021

LAG-3 + Subgroup

3 November 2021

79

The Need for More Accurate Predictive Biomarkers Multi-modal solution integrating biologic and AI-based insights

Digital Pathology + Deep Learning

CAP Personalized Healthcare Committee

The Cancer Immunotherapy Biomarker Testing Landscape

Data Sources.-Selected scientific publications and

Eric E. Walk, MD; Sophia L. Yohe, MD; Amy Beckman, MD; Andrew Schade, MD, PhD; Mary M. Zutter, MD; Mor. MD, PhD; Anna B. Burry, MD; on buhalf of the College of American Databased December Detected Linearity Linear Con-Eric E. Walk, MD; Sophia L. Yohe, MD; Amy Beckman, MD; Andrew Schade, MD, PhD; Mary M. Zutter, MD; John Pieller, MD, PhD; Anna B. Berry, MD; on behalf of the College of American Pathologists Personalized Health Care Committee Context.—Cancer immunotherapy provides unprece-Context.—Cancer immunomerapy provides imprece-dented rates of durable clinical benefit to late-stage cancer

patients across many tumor types, but there remains a critical need for biomarkers to accurately predict clinical response. Although some cancer immunotherapy tests are associated with approved therapies and considered validated, other biomarkers are still emerging and at various

states of clinical and translational exploration. Objective.—To provide pathologists with a current and practical update on the evolving field of cancer immuno-

therapy testing. The scientific background, clinical data, and testing methodology for the following cancer immunotherapy biomarkers are reviewed: programmed death ligand-1 (PD-L1), mismatch repair, microsatellite instability, tumor mutational burden, polymerase δ and ϵ ny, tumor mutational purgen, polymerase p and t mutations, cancer neoantigens, tumor-infiltrating lymphocytes, transcriptional signatures of immune responsiveness, cancer immunotherapy resistance biomarkers, and the

microbiome.

ancer immunotherapy has revolutionized the field of oncology by delivering unprecedented levels of durable survival benefit for cancer patients, including some patients with previously incurable late-stage disease. It is now widely accepted that the human immune system, when properly activated and in the absence of negative regulatory mechanisms, can efficiently eradicate even widespread metastatic cancer.¹³ This realization has had a transforma-

From the Department of Medical & Scientific Affairs, Roche Tissue Accepted for publication August 23, 2019. rrom use Department of Medical & Scientific Atlants, notice result Diagnostics, Tucson, Arizona (Dr Walk); the Department of Diagnostics, Tucson, Arizona (Dr. Watk); mir Department of Laboratory Medicine and Pathology, University of Minnesota Medical School Minnesotalic (The Value and Backmani): Diagnostic Medical School, Minneapolis (Dis Yohe and Beckman); Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, and experimental rannology, EII Litry and Company, intranspons, Indiana (Dr Schade); the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee (Dr Zutter); the Department of Molecular Pathology vite, renearce (or zamer); use organiment or workstate rationogy and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr and Genomics, Swedish Cancer Institute, Statute, Washington University Bertyl; and the Department of Pathology, Washington University

School of Medicine, St Louis, Miseouri (Dr Pieifer). Drs Metter and Berry are co-senior authors. Dr Walk is an employee at Roche Tissue Diagnostics and has stock ownership. Dr Schade is an employee at EE Lilly and Company. The

ownersnip, or schadu is an emproyee at the only and company, the other authors have no relevant financial interest in the products or companies described in this article.

ompanies described in this article. All authors are past or current members of the College of American Corresponding author: Eric E. Walk, MD, Department of Medical Ant autours are past or current memores or one con Pathologists Personalized Health Care Committee. Scientific Atlairs, Roche Tissue Diagnostics, 1910 E Innovation a scientific Ariani, Roche Itsue Diagnosics, 1910 è tenova Park Dr, Tucson, Arizona 85718 (email: eric.walk@roche.com).

Arch Pathol Lab Med

clinical trial data representing the current field of cancer Conclusions.—The cancer immunotherapy field, including the use of biomarker testing to predict patient immunotherapy. response, is still in evolution. PD-L1, mismatch repair, response, is suit in evolution. FLEET, montaten repair, and microsatellite instability testing are helping to guide the use of US Food and Drug Administration-approved the take of the room and bring automation and approved therapies, but there remains a need for better predictors of response and resistance. Several categories of tumor and patient characteristics underlying immune responsiveness are emerging and may represent the next generation of cancer immunotherapy predictive biomarkers. Pathologists have important roles and responsibilities as the field of cancer immunotherapy continues to develop, including leadership of translational studies, exploration of novel biomarkers, and the accurate and timely implementation biomarkers, and the accurate and timety implementation of newly approved and validated companion diagnostics. (Arch Pathol Lab Med. doi: 10.5858/arpa.2018-0584-CP)

tive impact on the fields of oncology, radiology, and cancer drug development, as evidenced by new first-line treatment options, new criteria for radiologic response,³ and dramatic shifts in pharmaceutical pipeline strategies. The US Food and Drug Administration (FDA) has approved multiple cancer immunotherapies for a wide range of cancer indications (Table 1),² and more than 2000 cancer immunotherapy agents are currently in clinical development.⁵ Despite all the enthusiasm and positive clinical outcome data, however, cancer immunotherapy currently benefits only a small subset of cancer patients-around 20% on average across the cancer indications assessed through clinical trials." Because not all patients respond to cancer immunotherapy, and some experience serious adverse immune reactions,7 biomarkers predicting efficacy are critically needed both for current clinical care and to enable and drive further progress in this rapidly advancing field. Anatomic and molecular pathologists have the opportunity to be at the center of the development, validation, and

clinical implementation of patient selection biomarkers for cancer immunotherapy. Predictive immunotherapy bio markers such as programmed death ligand-1 (PD-L1) immunohistochemistry (IHC), mismatch repair (MMR) INTERCONCERNMENT (HTP-), INTERCONCERNMENT (PRAVIA) IHC, and microsatellite instability (MSI) testing are already established as routine in many pathology laboratories around the world. In addition, emerging cancer immunotherapy biomarkers such as tumor-infiltrating lymphocyte (IIL) assessment and multiplexed assessment of the tumor (414) assessment and manufrexed assessment or the tunor microenvironment are dependent on in situ cellular and Cancer Immunotherapy Biomarker Testing Landscape—Walk et al

COLLEGE of AMERICAN PATHOLOGISTS

Educational resource for pathologists and oncologists on the current standard of care and emerging trends in immuno-oncology testing

Walk E, Yohe S, Schade A, et al. The Cancer Immunotherapy Biomarker Testing Landscape. Arch Pathol Lab Med. 2020 Jun;144(6):706-724.

© College of America

3 November 2021 81

CAP Personalized Healthcare Committee: Precision Medicine Webpage

Home > Member Resources > Articles > Cancer Immunotherapy Biomarker Testing – What Pathologists Need to Know

Cancer Immunotherapy Biomarker Testing – What Pathologists Need to Know

Cancer immunotherapy has revolutionized the field of oncology by delivering unprecedented levels of durable survival benefit for cancer patients, including some patients with previously incurable late-stage disease.

Anatomic and molecular pathologists have the opportunity to be at the center of the development, validation and clinical implementation of critically needed cancer immunotherapy biomarkers. Predictive immunotherapy biomarkers such as programmed death ligand-1 (PD-L1) immunohistochemistry (IHC), mismatch repair (MMR) IHC and microsatellite instability (MSI) testing are already established as routine testing in many pathology laboratories around the world, with other biomarkers and technologies still in the exploratory phase.

Clear guidelines for cancer immunotherapy testing are not currently available and the field is evolving rapidly in response to new clinical and translational data.

The intent of this webpage is to briefly summarize those cancer immunotherapy biomarkers that are in routine use as a resource for individualized test selection in clinical pathology practice.

For a more complete review of this field, please refer to the recently published article The Cancer Immunotherapy Biomarker Testing Landscape' (Walk et. al Arch Pathol Lab Med-Vol 144, June 2020)1.

Brief, relevant articles by CAP members that enable the reader to gain a better understanding of a particular area of precision medicine.

3 November 2021

82

Thank You!

Questions & Answers

© College of American Pathologists.

CAP's Precision Medicine Webpage

- The webpage includes brief, relevant articles by CAP members that enable the reader to gain a better understanding of a particular area of precision medicine.
 - Examples include pharmacogenetics, immune response genes, and the latest in the molecular drivers Ο of cancer.
 - o Access them <u>www.cap.org</u> >

Member Resources > Precision Medicine

3 November, 2021 84

CAP's Pathology Resource Guide: Precision Medicine

- The CAP has created the Pathology Resource Guides to assist pathologists in understanding key emerging technologies.
 - Printed guides are now available for members (\$39) and non-members (\$69)
 - The digital copy of the Resource Guides are a complimentary member benefit 0
 - Access them <u>www.cap.org</u> > Resources and Publications

3 November, 2021 85

THANK YOU!

Thank you for attending our webinar,

"Cancer Immunotherapy: Progress and Challenges on the Journey to Cure Cancer"

by Eric Walk MD, FCAP

For comments about this webinar or suggestions for upcoming webinars, please contact phcwebinars@cap.org.

NOTE: There is no CME/CE credit available for today's free webinar. The PDF of the presentation will be sent out in a week.

3 November, 2021 86

