Drug Testing: Today and Tomorrow

Michael A. Peat, Ph.D.
Assistant Commissioner
Forensic Drug Testing Accreditation Program
College of American Pathologists

August 22, 2020
Introduction: Michael A. Peat, Ph.D.

- Editor-in-Chief of the *Journal of Forensic Sciences*, the official journal of the American Academy of Forensic Sciences (AAFS)
- Consultant to the United States Anti-Doping Agency
- Faculty Member for the American College of Occupational and Environmental Medicine
- Assistant Commissioner of the Forensic Drug Testing Accreditation Program for the College of American Pathologists
- Ph.D. from the University of Utah Department of Biochemical Pharmacology and Toxicology

© College of American Pathologists.
Objectives

• Share evolution within the US and the major testing programs
• Show data of effectiveness in reducing drug use
• Discuss up-to-date issues with drug use and cheating
• Expand application in other areas like Pain Management and Forensic Toxicology
Topics

- Urine, Oral Fluid, and Hair Drug Testing
- Professional Health Monitoring Programs
- Athletic Drug Testing
- What does tomorrow bring?
- Pain Management Programs
- Forensic Toxicology
- Future Challenges
Drug Effects and Detection Periods

<table>
<thead>
<tr>
<th>Drug Effects</th>
<th>Detection Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intoxication</td>
<td>minutes to hours</td>
</tr>
<tr>
<td>Impairment</td>
<td>minutes to hours</td>
</tr>
<tr>
<td>Under influence</td>
<td>minutes to hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Detection Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood (plasma)</td>
<td>minutes to days</td>
</tr>
<tr>
<td>Breath</td>
<td>minutes to ?</td>
</tr>
<tr>
<td>Oral fluid</td>
<td>minutes to days</td>
</tr>
<tr>
<td>Urine</td>
<td>hours to days</td>
</tr>
<tr>
<td>Sweat patch</td>
<td>weeks</td>
</tr>
<tr>
<td>Hair</td>
<td>days to months</td>
</tr>
<tr>
<td>Nails</td>
<td>days to months</td>
</tr>
</tbody>
</table>
Workplace Drug Testing in the US: History

- Started in the 1980s and is almost routinely performed for pre-employment purposes
- Department of Transportation (DOT) and others introduced rules for drug testing in the early 1990s and added alcohol testing rules in the late 1990s
Workplace Drug Testing in the US: Today

- Program began with 5 drug classes and 7 drugs, now includes 7 classes and 14 drugs
- Regulated testing includes pre-employment, probable cause, random and return to duty testing
- Almost 10 million people covered by this regulated testing – commercial drivers the largest proportion; also covers airline and railroad employees
- Primarily use urine but oral fluid has been approved by Substance Abuse and Mental Health Services Administration (SAMHSA); awaiting DOT rules for its implementation
Screening and Confirmation Cut-Offs

<table>
<thead>
<tr>
<th>Screening Cut-Offs (ng/ml)</th>
<th>Confirmation Cut-Offs (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana Metabolites (TCHA)</td>
<td>THCA</td>
</tr>
<tr>
<td>Cocaine Metabolites</td>
<td>Benzoylgcognine</td>
</tr>
<tr>
<td>Codeine/Morphine</td>
<td>Codeine</td>
</tr>
<tr>
<td>Hydrocodone/Hydromorphone</td>
<td>Morphine</td>
</tr>
<tr>
<td>Oxycodone/Oxymorphone</td>
<td>Hydrocodone</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>Hydromorphone</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>Oxycodone</td>
</tr>
<tr>
<td>Amphetamines/Methamphetamine</td>
<td>Oxymorphone</td>
</tr>
<tr>
<td>MDMA/MDA</td>
<td>6-Acetylmorphine</td>
</tr>
<tr>
<td></td>
<td>Phencyclidine</td>
</tr>
<tr>
<td></td>
<td>Amphetamine</td>
</tr>
<tr>
<td></td>
<td>Methamphetamine</td>
</tr>
<tr>
<td></td>
<td>MDMA</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
</tr>
</tbody>
</table>
Positive Rates (as % of total tested): Urine, Oral Fluid and Hair
(General U.S. Workforce for Oral Fluid and Hair. Combined U.S. Workforce for Urine)
(Nearly 9 million urine tests from January to December 2018)

Source: Quest Diagnostics Drug Index 2018
Percent of Positives (cont.)

Positive Rates (as a %) by Workforce: Federal, General, Combined
(More than 2.4 million Federal tests and more than 6.5 million General tests)

Source: Quest Diagnostics Drug Index 2018
Percent of Positives: Federal vs General Workforce

2018: Percent of Positives by Drug - Federal Workforce
(More than 2.4 million tests from January to December 2018)

- Amphetamines: 24.2%
- Cocaine: 10.0%
- Marijuana: 31.4%
- MDMA: 0.1%
- Opiates: 5.8%
- Opioids: 28.2%
- PCP: 0.4%

2018: Percent of Positives by Drug - General Workforce
(More than 6.5 million tests from January to December 2018)

- Amphetamines: 22.1%
- Cocaine: 5.2%
- Marijuana: 51.6%
- MDMA: 0.1%
- Opiates: 6.3%
- Opioids: 14.6%
- PCP: 0.2%

Source: Quest Diagnostics Drug Index 2018
Specimen Positivity: Workplace Drug Testing

United States: Quest Diagnostics
More than 500,000 specimens

Brazil: Quest Diagnostics
More than 1.7 million specimens

Source: Quest Diagnostics March 2016 – March 2019
Findings from Brazil Drug Testing

Substance abuse issues are more ‘occupational’ in nature

Analysis by Quest Diagnostics showed cocaine ranks as the most commonly detected drug in toxicology tests for Brazilian drivers renewing their licenses from March 2016 to March 2019. Of those test results confirmed positive, the following substances were detected:

- 73% cocaine
- 13.4% marijuana
- 9.5% opiates
- 3.04% amphetamine
- 1.4% methamphetamine
- 0.05% mazindol

Source: Quest Diagnostics; more than 50,000 positive test results
Various Publications

Source: Google search on book titles
Substitution and Adulteration Testing

- Required for regulated programs and commonly included in other programs
 - Substitution: Less than 2 mg/dl creatinine and specific gravity equal to or less than 1.0010
 - DOT has a criteria for creatinine between 2 and 5 mg/dl
 - Adulterated
 - presence of oxidizing agents, household chemicals, and other substances
 - pH less than 4 and greater than 11
 - Invalid specimens
 - inconsistent creatine and specific gravity readings
 - Suspect adulterant to be present but cannot confirm it
Stealth
The Catalytic Purifier

Directions for Use:
1. Add the powdered catalyst to the
 sample within 1 hour of time.
2. Mix in 240 ml of water or saline.
3. Add 4 drops of NaOH solution or saline solution.
4. Stir briefly to ensure mixing.

Caution: For external use only. Do not drink. Do not use with eyes, skin, or clothing, wash for
at least 3 minutes.

Storage:
- Do not use the catalyst and activate samples in a
 plastic container before use. Be sure that the samples
 are stored in a plastic container such as glass
- Sterilize with 50 ml of NaOH solution.
- If the container is not burned, sterilize the container
- If the container is not burned, sterilize the container
- Clean the container with soap and water.

Helpful Hints:
- To preserve the sample, add 4 drops of NaOH solution to the 144 sample.
- Allow to warm to approximately 100°C before use.
- The pump should not be used with a body temperature of
 more than 37°C before use. The product will last about 2
- Do not use with eyes, skin, or clothing.

Ingredients: Sodium carbonate, liquid activator.

Catalytic purifier
Oral Fluid and Hair versus Urine

- **Pros:**
 - Less invasive collection – directly observed
 - Multiple sampling for hair – drug use history by segmentation, although latest data may challenge this
 - Easier shipment and storage
 - More resistant to adulteration and substitution

- **Cons:**
 - Variations in detection windows
 - Less is known about the science – dose vs concentration studies
 - More sensitive procedures needed – however, advanced MS technology more than capable today
 - Proficiency Testing Programs – difficult to establish for hair

Hair: https://animal.ifas.ufl.edu/brooks_equine_genetics_lab/research/lab/basics.shtml
Oral Fluid: Laboratory Testing

- Important Points to Be Made:
 - Same approach as urine testing – immunoassay initial test followed by confirmation using mass spectrometric procedures
 - Latter may include LCMS, GCMS, LCMSMS, UltraHPLCMSMS, TOFSIMS, etc.
 - Chain of Custody and QC protocols similar to urine testing
 - No specimen validity testing required
 - THC included and not THC metabolite
 - To be certified for oral fluid testing, labs. must demonstrate competency through satisfactory performance testing and inspection
SAMHSA Oral Fluid: Screening and Confirmation Cut-Offs

Screening Cut-Offs (ng/ml)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-Off (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (TCH)</td>
<td>4</td>
</tr>
<tr>
<td>Cocaine/Benzoylecgonine</td>
<td>15</td>
</tr>
<tr>
<td>Codeine/Morphine</td>
<td>30</td>
</tr>
<tr>
<td>Hydrocodone/Hydromorphone</td>
<td>30</td>
</tr>
<tr>
<td>Oxycodone/Oxymorphone</td>
<td>30</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>4</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>10</td>
</tr>
<tr>
<td>Amphetamines/Methamphetamine</td>
<td>50</td>
</tr>
<tr>
<td>MDMA/MDA</td>
<td>50</td>
</tr>
</tbody>
</table>

Confirmation Cut-Offs (ng/ml)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-Off (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (TCH)</td>
<td>2</td>
</tr>
<tr>
<td>Cocaine</td>
<td>8</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>8</td>
</tr>
<tr>
<td>Codeine</td>
<td>15</td>
</tr>
<tr>
<td>Morphine</td>
<td>15</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>15</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>15</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>15</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>15</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>2</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>10</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>25</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>25</td>
</tr>
<tr>
<td>MDMA</td>
<td>25</td>
</tr>
<tr>
<td>MDA</td>
<td>25</td>
</tr>
</tbody>
</table>
Oral Fluid: Pharmacology

• Incorporation into oral fluid:

 o Passive diffusion from plasma – dependent upon oral fluid pH (ionized/non-ionized at oral fluid pH), solubility in lipid membranes and degree of plasma protein binding

 o Only free non-protein bound and non-ionized drug can cross membranes into oral fluid

 o From the buccal cavity – oral use, smoking, inhalation and insufflation

Oral Fluid: Marijuana (THC and THCA) Detection

• THC and THCA in oral fluid:
 o THC trapped in buccal cavity can be detected for the first 12 to 18 hours, maybe as long as 24 to 30 hours. THC and THCA are heavily plasma protein bound – limited transfer to oral fluid from blood.
 o THCA can be detected by sensitive MSMS technologies (similar to those used in hair testing) and detection window is longer, especially for heavy users
 o HHS decided to require THC testing at 4 ng/ml for the screening test and 2 ng/ml for the confirmation test

• Passive exposure
 o Under extreme conditions it is possible that detectable amounts of THC may be detected. However, as with urine the concentrations remain below the cut-offs.
Hair Testing: Screening Cut-Offs

Lab A: Screening Cut-offs (pg/mg hair)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-off (pg/mg hair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (THC)</td>
<td>1</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>300</td>
</tr>
<tr>
<td>Cocaine/Metabolites</td>
<td>300</td>
</tr>
<tr>
<td>Opiates</td>
<td>300</td>
</tr>
<tr>
<td>Opiates/Opioids</td>
<td>500</td>
</tr>
<tr>
<td>PCP</td>
<td>300</td>
</tr>
</tbody>
</table>

Lab B: Screening Cut-offs (pg/mg hair)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-off (pg/mg hair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (THC)</td>
<td>2</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>500</td>
</tr>
<tr>
<td>Cocaine/Metabolites</td>
<td>500</td>
</tr>
<tr>
<td>Opiates, Hydrocodone and Hydromorphone</td>
<td>200</td>
</tr>
<tr>
<td>Oxycodone/Oxymorphone</td>
<td>200</td>
</tr>
<tr>
<td>PCP</td>
<td>300</td>
</tr>
</tbody>
</table>
Hair Testing: Confirmation Cut-Offs

Lab A: Confirmation Cut-offs (pg/mg)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-off (pg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (THCA)</td>
<td>0.1</td>
</tr>
<tr>
<td>Amphetamines (includes amphetamine, methamphetamine, MDMA and MDA)</td>
<td>300</td>
</tr>
<tr>
<td>Cocaine/Metabolites (includes benzoylecgonine, cocaine, cocaethylene, and norcocaine)</td>
<td>300</td>
</tr>
<tr>
<td>Opiates/Opioids (includes morphine, codeine, MAM, hydrocodone, hydromorphone, oxycodone, and oxymorphone)</td>
<td>300</td>
</tr>
<tr>
<td>PCP</td>
<td>300</td>
</tr>
<tr>
<td>Marijuana (THCA)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Lab B: Confirmation Cut-offs (pg/mg)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cut-off (pg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana (THC)</td>
<td>2</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>500</td>
</tr>
<tr>
<td>Cocaine/Metabolites</td>
<td>500</td>
</tr>
<tr>
<td>Opiates, Hydrocodone and Hydromorphone</td>
<td>200</td>
</tr>
<tr>
<td>Oxycodone/Oxymorphone</td>
<td>200</td>
</tr>
<tr>
<td>PCP</td>
<td>300</td>
</tr>
</tbody>
</table>
Hair Testing: Pharmacology

- Incorporated by several different pathways:
 - Passive diffusion into the follicle base
 - Embedded into hair as bands during growth – amount of drug deposited proportional to blood concentration and the distance of band from surface can estimate time of use
 - Via secretions of the apocrine sweat glands and the sebaceous glands – adsorbed into the shaft during and after its formation

Image source: https://hairmax.co.uk/blogs/news/the-anatomy-of-the-hair-follicle
Hair Testing: Talking Points

• Same approach as urine testing – immunoassay initial test followed by confirmation using mass spectrometric procedures
• Latter will include LCMS, GCMS, LCMSMS, UltraHPLC-MSMS, TOFSIMS, etc.
• Chain of Custody and QC protocols similar to urine testing
• Proficiency Testing programs difficult to develop
• Laboratory Certification Program available through the College of American Pathologists (CAP)
Hair Testing: Talking Points – External Contamination

• Significant discussion on external contamination and wash procedures:
 o No consensus on procedure to be used – various solvents and chemicals used, enzymatic procedures also
 o Important to test washes to ensure no drugs are detected
 o Some reports that surface contaminants move into the hair during the wash
 o Detection of drug metabolites – important to overcome claims of external contamination
Hair Testing: Further Talking Points

- Adsorption from deposition by sweat etc. and absorption from blood/serum, sebaceous fluid
- Segmentation (ability to approximate time of use by dividing strand into segments) called into question because of diffusion along the shaft as hair grows
- Detailed dose to concentration studies not available – how much must the user use?
- Not suitable for reasonable cause or post-accident testing because of time lag between drug use and incorporation into hair shaft
Positive Prevalence in Hair and Urine**

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>Hair</th>
<th>Urine</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>12.6%</td>
<td>7.6%</td>
<td>66%</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>5.9%</td>
<td>2.1%</td>
<td>179%</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>5.9%</td>
<td>1.8%</td>
<td>222%</td>
</tr>
<tr>
<td>Cocaine</td>
<td>4.8%</td>
<td>0.65%</td>
<td>635%</td>
</tr>
<tr>
<td>Marijuana</td>
<td>3.4%</td>
<td>3.4%</td>
<td>0</td>
</tr>
<tr>
<td>Opiates</td>
<td>0.23%</td>
<td>0.52%</td>
<td>-56%</td>
</tr>
<tr>
<td>PCP</td>
<td>0.049%</td>
<td>0.048%</td>
<td>1%</td>
</tr>
</tbody>
</table>

** ~193,000 paired specimens 2004-2009 at Quest laboratories (pre-employment 73%; random 12%; other 15%)
Comparison of Positives: Urine vs. Hair**

<table>
<thead>
<tr>
<th></th>
<th>Urine Positive/ Hair Negative</th>
<th>Urine Negative/ Hair Positive</th>
<th>Urine and Hair both Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>18.4%</td>
<td>51.0%</td>
<td>30.6%</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>9.6%</td>
<td>67.6%</td>
<td>22.7%</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>5.9%</td>
<td>70.8%</td>
<td>23.4%</td>
</tr>
<tr>
<td>Cocaine</td>
<td>2.1%</td>
<td>86.7%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Marijuana</td>
<td>30.8%</td>
<td>30.5%</td>
<td>38.7%</td>
</tr>
<tr>
<td>Opiates</td>
<td>64.6%</td>
<td>19.8%</td>
<td>15.7%</td>
</tr>
<tr>
<td>PCP</td>
<td>29.9%</td>
<td>30.6%</td>
<td>38.7%</td>
</tr>
</tbody>
</table>

** ~30,000 non-negative paired specimens 2004-2009 at Quest laboratories
Topics

• Urine, Oral Fluid, and Hair Drug Testing
• Professional Health Monitoring Programs
• Athletic Drug Testing
• What does tomorrow bring?
• Pain Management Programs
• Forensic Toxicology
• Future Challenges

Acknowledgement:

I would like to thank Dr. Donna Smith (Quality Assurance Officer, RecoveryTrek, Norfolk, Virginia) for her assistance in preparing this Section of the Presentation.
Professional Health Monitoring Programs (PHMP) in the US

- Monitoring programs administered by each State, where participants sign a “contract” with their State Board program agreeing to abstinence from all drugs/controlled substances and alcohol
 - They are monitored via testing for 1-5 years, depending on their agreement with the State Board
 - Typically, physicians, nurses, pharmacists, and other health care professionals who have had their licenses revoked, suspended, or surrendered because of substance abuse

- Cut-offs, both screening and confirmation, are generally much lower than what is used in workplace testing
 - Frequently the confirmation cut-off is the laboratory’s limit of quantitation
PHMP in the US (cont.)

• The standard for testing is urine testing
 • Participants are typically tested once-twice per week in the first months; less frequently during the latter years
 • Laboratory-based testing using the workplace forensic standard of immunoassay screening and GC or LC Mass Spectrometry for confirmation
 • Custody and control forms are used to document each specimen collection and test
 • Cut-offs are generally lower than the workplace cut-offs

• Most PHMPs include hair or oral fluid testing as adjuncts to their urine drug testing programs
 • The drugs included on hair and oral fluid panels are less extensive than what is available for urine testing
PHMP in the US (cont.)

• Wide range of panels used – 10 drug to 35 plus drugs
 o Testing program may change weekly
 o A participant may have a urine screen one week using a drug panel of 14 drugs and the following week be tested using one with 26 drugs

• Almost all PHMPs include a urine panel option with ethanol glucuronide/ethanol sulfate alcohol biomarker testing
 o Cut-off levels are very low (250 or 500 ng/ml) and aimed at detecting even incidental or unknowing ingestion of alcohol

• Some also do PEth blood testing, using either whole blood (venipuncture draw) or dried blood spot (finger prick applied to treated card)
Typical drugs included in urine testing panels

• Amphetamines and MDMA:
 Methamphetamine and amphetamine
 MDMA, MDA and MDEA
 Phentermine
 Phenmetrazine

• Barbiturates:
 Secobarbital, phenobarbital and others as requested

• Benzodiazepines
 Diazepam, nordiazepam, oxazepam, temazepam, alprazolam, alpha-hydroxyalprazolam, temazepam, lorazepam, clonazepam, 7-aminoclonazepam and others as requested

• Opiates
 Morphine, Codeine and 6-acetylmorphine

• Opioids
 Hydrocodone, hydromorphone, oxycodone, oxymorphone

• Cocaine and benzoylcegonine

• PCP

• THC acid metabolite

• Fentanyls
 Fentanyl and norfentanyl
 Sufetanil and norsufentail

• Others
 Tramadol and meperidine (pethidine)
 Zolpidem

• Other expanded panels available upon request at most labs
Alcohol Biomarkers: Ethanol Glucuronide (EtG) and Ethanol Sulfate (EtS)

SAMHSA Interpretation Guidelines:

- **1000 ng/mL ("high" positive)**
 - heavy drinking prior 48 hrs.
 - light drinking same day

- **500-1000 ng/mL ("low" positive)**
 - previous heavy drinking (1-3 days)
 - recent light drinking (prior 24 hours)
 - "intense" extraneous exposure (last 24 hours)

- **100-500 ng/mL ("very low" positive)**
 - previous heavy drinking (1-3 days)
 - previous light drinking (12-36 hours)
 - recent extraneous exposure

Source: SAMHSA Advisory 2012
Topics

- Urine, Oral Fluid, and Hair Drug Testing
- Professional Health Monitoring Programs
- Athletic Drug Testing
- What does tomorrow bring?
- Pain Management Programs
- Forensic Toxicology
- Future Challenges
Athletic Testing: WADA and USADA* List

• International Olympic Committee (IOC) list includes:
 o Stimulants: 40 and other subjects with similar chemical structure or similar pharmacologic effects
 o Narcotics: 10 (does not include codeine)
 o Cannabinoids
 o Anabolic Agents (including but not limited):
 – Exogenous: 38 and their analogs
 – Endogenous: 5 and their analogs
 o Other anabolic agents: clenbuterol and zeranol
 o Peptide Hormones: EPO, hGH, IGF-1, hCG, LH (males only), insulin and corticotrophins
 o Beta-2 Agonists: some sports only and include salbutamol (aka albuterol)
 o Masking Agents
 o Glucocorticosteroids
 o Enhancement of oxygen transfer

*World Anti-Doping Agency (WADA) and United States Anti-Doping Agency
Reference: www.wada-ama.org and www.usantidoping.org
Athletic Testing: WADA and USADA List (cont.)

• Both WADA and USADA have websites for athletes
• Some Federations have their own specifically banned substance(s), for example the list for shooting includes propranolol
• Complex analytical protocols and performing labs must be certified by WADA
• Observed collections in all events

2020 full list can be found at https://www.wada-ama.org/en/content/what-is-prohibited (accessed August 6, 2020)

Reference: www.wada-ama.org and www.usantidoping.org
Topics

- Urine, Oral Fluid, and Hair Drug Testing
- Professional Health Monitoring Programs
- Athletic Drug Testing
- What does tomorrow bring?
- Pain Management Programs
- Forensic Toxicology
- Future Challenges
Areas not covered in this review of “workplace” drug testing

- Parole and probation testing
 - Point of collection testing and generally no confirmation
 - Sweat patch testing in some jurisdictions

- Student testing – high school and college sports teams
 - Mostly urine based and not widespread
 - Generally does not include performance enhancing drugs

- Driving under the influence of drugs
 - Performed in crime labs after a traffic stop and if drugs are suspected
 - Variety of state laws cover this topic

- Rehabilitation programs
 - Often similar to probation or PHMP testing – great variation in approach used
Current and Future Challenges

• Other specimens for drug testing
 o Nails – being used today in some programs, for example commercial driver testing in Brazil
 o Breath – work done by the Karolinska Institute and others show that this is feasible. Practical applications still unknown as it uses MS

• Designer drugs
 o Amphetamines, Cannabinomimetics, “Bath Salts”, Fentanyl, Opioids, Tramadol – like, and ones unknown
 o Need for sophisticated MSMS and ability to “screen” specimens – for example, UHPLCHRMS.

• Accreditation – regulatory oversight
 o Only increase as drug testing increases

What does the COVID-19 pandemic do to funding and ability to test?
Topics

• Urine, Oral Fluid, and Hair Drug Testing
• Professional Health Monitoring Programs
• Athletic Drug Testing
• What does tomorrow bring?
• Pain Management Programs
• Forensic Toxicology
• What does tomorrow bring?
Pain Management

- Clinical medicine and urine (or oral fluid) drug testing plays an important part in a pain management program and is a growing area.

- Following link is to some Guidelines published by AACC in 2018:

Pain Management Guidelines

• To test or not to test, and when?
 o Effective at detecting drug use
 o Testing not necessarily an indicator of outcomes
 o Should be random
 o Frequency based on patient risk

• Which substances to test for?
 o Tier I: Routine monitoring – five drug classes (amphetamines, benzodiazepines, cannabinoids, cocaine and opioids)
 o Tier II: High risk patients – includes a number of others, for example alcohol, antidepressants, dissociative anesthetics, muscle relaxants and other narcotics
 o Tier III: As clinically indicated

Source: www.arup.com
Pain Management Guidelines

• Which specimen to test?
 o Urine preferred
 o Oral fluid is being used

• Specimen validity testing?
 o Temperature and pH check at collection
 o Laboratory performs at least creatinine, specific gravity and have a more extensive panel available if needed

• What do different lab methods mean?
 o Generally use immunoassay screens and mass spec. confirmations.
 o In the US testing methods can affect billing codes

Source: www.arup.com
Pain Management Guidelines

• How to test?
 o Immunoassay screens a must
 o Confirmation preferable if results are inconsistent with patient history

• Are quantitative results necessary?
 o Not necessarily
 o If done, should not be used to evaluate dosage
 o Maybe useful in complex cases

• Interpretation
 o Consultation needs to be available
Example of Urine Testing Panel

- Amphetamines
- Barbiturates
- Benzodiazepines
- Buprenorphine
- Carisprodlol
- Cocaine
- Ethanol glucuronide
- Fentanyl
- MDMA

- Meperidine
- Methadone
- Opiates and opioids
- PCP
- Propoxyphene
- Tapentadol
- Tramadol
- Cannabinoids
- Zolpidem
Topics

- Urine, Oral Fluid, and Hair Drug Testing
- Professional Health Monitoring Programs
- Athletic Drug Testing
- What does tomorrow bring?
- Pain Management Programs
- Forensic Toxicology
- Future Challenges
Forensic Toxicology

• Classically defined as toxicology testing to assist the medical examiner, forensic pathologist, or other personnel in determining the cause of death

• Today it is essentially toxicology testing for forensic or legal purposes
 o Includes driving while impaired, drug facilitated sexual assault and medico-legal investigations

• Testing panels are often extensive and vary by geography
 o Common drugs include a wide range of drugs of abuse, therapeutic agents, and over the counter drugs
 o In some areas or cases can include metals, pesticides, volatiles and organic solvents

• In the US today focus is on standardization
American Standards Board (ASB)

- Subsidiary of American Academy of Forensic Sciences
- Accredited by the American National Sciences Institute
- Standards developed in three steps
 - Preparation by committees of experts
 - Consensus body comment and review – often this is repeated
 - Final preparation of standard by ASB
- Standards being developed by either ASB or NIST in all areas of forensic science
- Some overlap with European Union initiatives and ISO standards
- In forensic toxicology ASB has published the following standards:
 - Standard Practices for Method Validation in Forensic Toxicology (2019)
 - Measurement Traceability in Forensic Toxicology (2018)

Reference: www.asbstandard.org
American Standards Board (ASB) – cont.

- The OSAC Toxicology Sub-committee and ASB Toxicology Consensus Body encourage all interested parties to provide comments on recirculated versions of three toxicology standards:

Reference: www.asbstandard.org
American Board of Forensic Toxicology: Accreditation Program

Inspection Checklist: Table of Contents

- SECTION A: MANAGEMENT AND ADMINISTRATION
- SECTION B: PERSONNEL
- SECTION C: STANDARD OPERATING PROCEDURE MANUAL
- SECTION D: SPECIMENS, SECURITY AND CHAIN OF CUSTODY
- SECTION E: QUALITY ASSURANCE, AND QUALITY CONTROL AND REPORTING
- SECTION F: SCOPE OF FORENSIC TOXICOLOGY TESTING AND PROFICIENCY TESTING PERFORMED
- SECTION G: CHROMATOGRAPHY AND CALIBRATION
- SECTION H: MASS SPECTROMETRY (GC/MS[MS], LC/MS[MS], HIGH RESOLUTION MS
- SECTION I: OTHER TECHNIQUES
- SECTION J: BIOCHEMISTRY INCLUDING IMMUNOASSAY
- SECTION K: OTHER EXHIBITS
- SECTION L: SAFETY
Topics

- Urine, Oral Fluid, and Hair Drug Testing
- Professional Health Monitoring Programs
- Athletic Drug Testing
- What does tomorrow bring?
- Pain Management Programs
- Forensic Toxicology
- Future Challenges
Current and Future Challenges

• Pain Management
 o Interpretation – if testing is only a confirmation of using program why cannot POCT replace lab testing? Development of dosing algorithms for urine date not feasible today. However, ones using oral fluid concentrations maybe more practical?

• Driving while impaired
 o Breath testing for drugs – is that practical?
 o Cannabis breathalyzer – will it detect THC, THC metabolites or cannabinoids – if it doesn’t detect THC what value does it have?
 o Oral fluid roadside testing for drugs – more practical – probably not as inclusive as a lab testing program
Current and Future Challenges

• Forensic toxicology
 - Use of more high-powered MS protocols
 - Regulatory oversight, especially in countries where DWI, Sexual Assaults, etc., specimens analyzed in traditional forensic toxicology labs.
Current and Future Challenges

• Has technology exceeded our ability to interpret the data?
 o What does a 1 ng/ml THC and a 20 ng/ml THCA concentration in blood mean? Is it indicative of impairment?
 o A 22 year old is found dead in his college dorm. The forensic toxicology examination showed the presence of trace amounts of ketamine. The pathology examination showed no life-threatening medical conditions. What is the cause of death?

• Therapeutic use of psychedelics
 o MDMA for PTSD and ketamine for depression (How to Change Your Mind, Michael Pollan, Penguin Press, 2018)

What does the COVID-19 pandemic do to funding and ability to test?
Summary

- Review workplace drug testing and data to show impact
- Understand choice of panels and related considerations
- Share changes in technology and regulatory oversight
- Discuss future challenges including unknowns like COVID
Thank you for your participation and interest.

Email us at: international@cap.org