ASCO[°] Guidelines

Supplemental Digital Content* | Methodology | January 2020

Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Clinical Practice Guideline Update

Guideline from the American Society of Clinical Oncology and the College of American Pathologists

Corresponding Author: Kimberly Allison, MD, FCAP

https://www.archivesofpathology.org/doi/pdf/10.5858/arpa.2019-0904-SA

*The Supplemental Digital Content was not copyedited by *Journal of Clinical Oncology* and *Archives of Pathology & Laboratory Medicine*

Supplemental Digital Content

Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Clinical Practice Guideline Update

Table of Contents

Data Supplement 1: Quantitative Image Analysis Principles

Data Supplement 2: Figure 1. Example of a Lab-Specific Standard Operating Procedure for cases with initial ER IHC result with < 10% of cells staining or stain intensity is weak

Figure 1a. Internal controls present and stain appropriately Figure 1b. No internal controls present in sample tested Figure 1c. Internal controls present but weaker than expected or negative

Data Supplement 3: Search Strategy String and Dates

Data Supplement 4: QUOROM Diagram

Data Supplement 5: Evidence Tables

Data Supplement 1: Quantitative Image Analysis Principles¹

- 1. Use only QIA systems that have been validated for diagnostic purposes
- 2. Validate QIA results before offering this test using an alternative validated method such as manual IHC interpretation using approved reagents
- 3. Monitor and document the reproducibility and precision of the results using:
 - a. Same case, different batches
 - b. Same case, different operators or pathologists
- 4. Create standard procedures and monitor their use for training:
 - a. New operators and pathologists in finding region of interest (ROI)
 - b. New operators and pathologists in using the annotated data to produce a result
 - c. Pathologists in reviewing ROI, annotated data and result
- 5. Revalidate the QIA system if changes are made
- 6. Document QIA results in the report
- 7. Maintain images and metadata for future review according to local regulations

Data Supplement 2: Figure 1. Example of a Lab-Specific Standard Operating Procedure for cases with initial ER IHC result with < 10% of cells staining or stain intensity is weak

Figure 1a. Internal controls present and stain appropriately

Report comments: *Recommended comment for low positive results: The cancer in this sample has a low level (1-10%) of ER expression by IHC. There are limited data on the overall benefit of endocrine therapies for patients with these results, but they currently suggest possible benefit, so patients are considered eligible for endocrine treatment. There are data that suggest invasive cancers with these results are heterogeneous in both behavior and biology and often have gene expression profiles more similar to ER negative cancers. **If the test results are either ER negative or low positive and no internal controls are present, the following comment should be included in the report: No internal controls are present, but external controls are appropriately positive. If needed, testing another specimen that contains internal controls may be warranted for confirmation of ER status.

Figure 1b. No internal controls present in sample tested

Figure 1c. Internal controls present but weaker than expected or negative

Data Supplement 3: Search Strategy String and Dates

Question 1: What is the optimal testing algorithm for the assessment of ER/PR status?

1/1/2008 - 02/10/2016: 1051 results

02/10/2016 -04/30/2019: 719 results

("humans"[MeSH Terms] OR "humans"[All Fields] OR "human"[All Fields]) AND ("breast neoplasms"[MeSH Terms] OR ("breast"[All Fields] AND "neoplasms"[All Fields]) OR "breast neoplasms" [All Fields]) AND (("receptors, estrogen" [MeSH Terms] OR ("receptors" [All Fields] AND "estrogen"[All Fields]) OR "estrogen receptors"[All Fields] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "receptors, estrogen"[All Fields]) OR ("receptors, progesterone"[MeSH Terms] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "progesterone receptors"[All Fields] OR ("receptors" [All Fields] AND "progesterone" [All Fields]) OR "receptors, progesterone" [All Fields]) OR ("tumour markers" [All Fields] OR "biomarkers, tumor" [MeSH Terms] OR ("biomarkers" [All Fields] AND "tumor"[All Fields]) OR "tumor biomarkers"[All Fields] OR ("tumor"[All Fields] AND "markers"[All Fields]) OR "tumor markers" [All Fields]) OR ("biology" [MeSH Terms] OR "biology" [All Fields] OR "biological" [All Fields])) AND (("algorithms"[MeSH Terms] OR "algorithms"[All Fields]) OR ("decision support techniques"[MeSH Terms] OR ("decision"[All Fields] AND "support"[All Fields] AND "techniques"[All Fields]) OR "decision support techniques" [All Fields]) OR ("computational biology" [MeSH Terms] OR ("computational"[All Fields] AND "biology"[All Fields]) OR "computational biology"[All Fields]) OR ("immunohistochemistry"[MeSH Terms] OR "immunohistochemistry"[All Fields]) OR ("staining and labelling" [All Fields] OR "staining and labeling" [MeSH Terms] OR ("staining" [All Fields] AND "labeling" [All Fields]) OR "staining and labeling"[All Fields]) OR ("reference standards"[MeSH Terms] OR ("reference"[All Fields] AND "standards"[All Fields]) OR "reference standards"[All Fields]) OR (("laboratories"[MeSH Terms] OR "laboratories"[All Fields] OR "laboratory"[All Fields]) AND ("methods" [Subheading] OR "methods" [All Fields] OR "techniques" [All Fields] OR "methods" [MeSH Terms] OR "techniques"[All Fields]) AND ("methods"[Subheading] OR "methods"[All Fields] OR "procedures"[All Fields] OR "methods"[MeSH Terms] OR "procedures"[All Fields]))) AND (("disease-free survival"[MeSH Terms] OR ("disease-free"[All Fields] AND "survival"[All Fields]) OR "disease-free survival"[All Fields] OR ("disease"[All Fields] AND "free"[All Fields] AND "survival"[All Fields]) OR "disease free survival"[All Fields]) OR ("survival rate"[MeSH Terms] OR ("survival"[All Fields] AND "rate"[All Fields]) OR "survival rate" [All Fields]) OR ("neoplasm recurrence, local" [MeSH Terms] OR ("neoplasm"[All Fields] AND "recurrence"[All Fields] AND "local"[All Fields]) OR "local neoplasm recurrence"[All Fields] OR ("neoplasm"[All Fields] AND "recurrence"[All Fields] AND "local"[All Fields]) OR "neoplasm recurrence, local" [All Fields]) OR ("prognosis" [MeSH Terms] OR "prognosis" [All Fields]) OR ("treatment outcome" [MeSH Terms] OR ("treatment" [All Fields] AND "outcome" [All Fields]) OR "treatment outcome"[All Fields]) OR ("outcome and process assessment (health care)"[MeSH Terms] OR ("outcome" [All Fields] AND "process" [All Fields] AND "assessment" [All Fields] AND "(health" [All Fields] AND "care)"[All Fields]) OR "outcome and process assessment (health care)"[All Fields] OR ("outcome" [All Fields] AND "process" [All Fields] AND "assessment" [All Fields]) OR "outcome and process assessment"[All Fields]) AND ("delivery of health care"[MeSH Terms] OR ("delivery"[All Fields] AND

"health"[All Fields] AND "care"[All Fields]) OR "delivery of health care"[All Fields] OR ("health"[All Fields] AND "care"[All Fields]) OR "health care"[All Fields]) OR ("outcome assessment (health care)"[MeSH Terms] OR ("outcome"[All Fields] AND "assessment"[All Fields] AND "(health"[All Fields] AND "care)"[All Fields]) OR "outcome assessment (health care)"[All Fields] OR ("outcome"[All Fields] AND "assessment"[All Fields]) OR "outcome assessment"[All Fields]) AND ("delivery of health care"[MeSH Terms] OR ("delivery"[All Fields] AND "health"[All Fields] AND "care"[All Fields]) OR "delivery of health care"[All Fields] OR ("health"[All Fields] AND "care"[All Fields]) OR "health care"[All Fields]) OR ("process assessment (health care)"[MeSH Terms] OR ("process"[All Fields] AND "assessment"[All Fields] AND "(health"[All Fields] AND "care)"[All Fields]) OR "process assessment (health care)"[All Fields] OR ("process"[All Fields] AND "assessment"[All Fields]) OR "process assessment"[All Fields]) AND ("delivery of health care"[MeSH Terms] OR ("delivery"[All Fields] AND "health"[All Fields] AND "care"[All Fields]) OR "delivery of health care" [All Fields] OR ("health" [All Fields] AND "care" [All Fields]) OR "health care"[All Fields]) OR ("false negative reactions"[MeSH Terms] OR ("false"[All Fields] AND "negative"[All Fields] AND "reactions" [All Fields]) OR "false negative reactions" [All Fields]) OR ("false positive reactions"[MeSH Terms] OR ("false"[All Fields] AND "positive"[All Fields] AND "reactions"[All Fields]) OR "false positive reactions"[All Fields]) OR ("observer variation"[MeSH Terms] OR ("observer"[All Fields] AND "variation" [All Fields]) OR "observer variation" [All Fields]) OR ("diagnostic errors" [MeSH Terms] OR ("diagnostic"[All Fields] AND "errors"[All Fields]) OR "diagnostic errors"[All Fields]) OR ("reproducibility of results"[MeSH Terms] OR ("reproducibility"[All Fields] AND "results"[All Fields]) OR "reproducibility of results"[All Fields]) OR ("sensitivity and specificity"[MeSH Terms] OR ("sensitivity"[All Fields] AND "specificity"[All Fields]) OR "sensitivity and specificity"[All Fields]) OR ("predictive value of tests"[MeSH Terms] OR ("predictive"[All Fields] AND "value"[All Fields] AND "tests"[All Fields]) OR "predictive value of tests"[All Fields])) AND ("2008/01/01"[PDat] : "2016/02/10"[PDat])

Question 2: What strategies can help ensure optimal performance, interpretation, and reporting of established assays?

1/1/2008 - 02/10/2016: 1597 results

02/10/2016 -04/30/2019: 983 results

("humans"[MeSH Terms] OR "humans"[All Fields] OR "human"[All Fields]) AND ("breast neoplasms"[MeSH Terms] OR ("breast"[All Fields] AND "neoplasms"[All Fields]) OR "breast neoplasms"[All Fields]) AND (("receptors, estrogen"[MeSH Terms] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "estrogen receptors"[All Fields] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "receptors, estrogen"[All Fields]) OR ("receptors, progesterone"[MeSH Terms] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "progesterone receptors"[All Fields] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "receptors, progesterone"[All Fields]) OR ("tumour markers"[All Fields] OR "biomarkers, tumor"[MeSH Terms] OR ("biomarkers"[All Fields]) OR "tumor"[All Fields]) OR "tumor biomarkers"[All Fields] OR ("tumor"[All Fields] AND "markers"[All Fields]) OR "tumor markers"[All Fields]) OR ("biology"[MeSH Terms] OR ("biology"[All Fields] OR "biological"[All Fields])) AND (("laboratories"[MeSH Terms] OR "biology"[All Fields] OR "biological"[All Fields])) AND (("laboratories"[MeSH Terms] OR "laboratories"[All Fields]) OR "hospital"[MeSH Terms] OR ("laboratories, hospital"[MeSH Terms] OR ("laboratories"[All Fields] AND "hospital"[All Fields]) OR "hospital" laboratories"[All Fields] OR ("laboratories"[All Fields] AND "hospital"[All Fields]) OR "laboratories, hospital"[All Fields]) OR (("laboratories"[MeSH Terms] OR "laboratories"[All Fields] OR "laboratory"[All Fields]) AND ("methods" [Subheading] OR "methods" [All Fields] OR "techniques" [All Fields] OR "methods"[MeSH Terms] OR "techniques"[All Fields]) AND ("methods"[Subheading] OR "methods"[All Fields] OR "procedures" [All Fields] OR "methods" [MeSH Terms] OR "procedures" [All Fields])) OR ("biopsy, needle"[MeSH Terms] OR ("biopsy"[All Fields] AND "needle"[All Fields]) OR "needle biopsy"[All Fields] OR ("biopsy"[All Fields] AND "needle"[All Fields]) OR "biopsy, needle"[All Fields]) OR ("biopsy, fine-needle"[MeSH Terms] OR ("biopsy"[All Fields] AND "fine-needle"[All Fields]) OR "fine-needle biopsy"[All Fields] OR ("biopsy"[All Fields] AND "fine"[All Fields] AND "needle"[All Fields]) OR "biopsy, fine needle"[All Fields]) OR ("neoplasm staging"[MeSH Terms] OR ("neoplasm"[All Fields] AND "staging"[All Fields]) OR "neoplasm staging"[All Fields]) OR ("immunohistochemistry"[MeSH Terms] OR "immunohistochemistry"[All Fields]) OR ("staining and labelling"[All Fields] OR "staining and labeling"[MeSH Terms] OR ("staining"[All Fields] AND "labeling"[All Fields]) OR "staining and labeling"[All Fields]) OR ("reference standards" [MeSH Terms] OR ("reference" [All Fields] AND "standards" [All Fields]) OR "reference standards" [All Fields]) OR ("analytic sample preparation methods" [MeSH Terms] OR ("analytic"[All Fields] AND "sample"[All Fields] AND "preparation"[All Fields] AND "methods"[All Fields]) OR "analytic sample preparation methods" [All Fields]) OR (histocytological [All Fields] AND preparation[All Fields]) OR ("methods"[Subheading] OR "methods"[All Fields] OR "techniques"[All Fields] OR "methods" [MeSH Terms] OR "techniques" [All Fields]) OR ("specimen handling" [MeSH Terms] OR ("specimen"[All Fields] AND "handling"[All Fields]) OR "specimen handling"[All Fields])) AND (("reproducibility of results"[MeSH Terms] OR ("reproducibility"[All Fields] AND "results"[All Fields]) OR "reproducibility of results"[All Fields]) OR ("sensitivity and specificity"[MeSH Terms] OR ("sensitivity"[All Fields] AND "specificity"[All Fields]) OR "sensitivity and specificity"[All Fields]) OR ("predictive value of tests"[MeSH Terms] OR ("predictive"[All Fields] AND "value"[All Fields] AND "tests"[All Fields]) OR "predictive value of tests"[All Fields]) OR ("diagnostic errors"[MeSH Terms] OR ("diagnostic"[All Fields] AND "errors" [All Fields]) OR "diagnostic errors" [All Fields])) AND ("2008/01/01" [PDat] : "2016/02/10"[PDat])

Question 2b: What are the optimal external quality assurance methods to ensure ongoing accuracy in ER/PR testing?

1/1/2008 - 02/10/2016: 1012 results

02/10/2016 -04/30/2019: 731 results

("humans"[MeSH Terms] OR "humans"[All Fields] OR "human"[All Fields]) AND ("breast neoplasms"[MeSH Terms] OR ("breast"[All Fields] AND "neoplasms"[All Fields]) OR "breast neoplasms"[All Fields]) AND (("receptors, estrogen"[MeSH Terms] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "estrogen receptors"[All Fields] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "receptors, estrogen"[All Fields]) OR ("receptors, progesterone"[MeSH Terms] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "progesterone receptors"[All Fields] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "receptors, progesterone"[All Fields]] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "receptors, progesterone"[All Fields]] OR ("tumour markers"[All Fields] OR "biomarkers, tumor"[MeSH Terms] OR ("biomarkers"[All Fields] AND

"tumor"[All Fields]) OR "tumor biomarkers"[All Fields] OR ("tumor"[All Fields] AND "markers"[All Fields]) OR "tumor markers" [All Fields]) OR ("biology" [MeSH Terms] OR "biology" [All Fields] OR "biological" [All Fields])) AND (("quality control"[MeSH Terms] OR ("quality"[All Fields] AND "control"[All Fields]) OR "quality control"[All Fields]) OR ("quality assurance, health care"[MeSH Terms] OR ("quality"[All Fields] AND "assurance" [All Fields] AND "health" [All Fields] AND "care" [All Fields]) OR "health care quality assurance"[All Fields] OR ("quality"[All Fields] AND "assurance"[All Fields] AND "health"[All Fields] AND "care"[All Fields]) OR "quality assurance, health care"[All Fields]) OR ("benchmarking"[MeSH Terms] OR "benchmarking"[All Fields]) OR ("medical audit"[MeSH Terms] OR ("medical"[All Fields] AND "audit"[All Fields]) OR "medical audit"[All Fields]) OR ("total quality management"[MeSH Terms] OR ("total"[All Fields] AND "quality"[All Fields] AND "management"[All Fields]) OR "total quality management"[All Fields]) OR ("guality indicators, health care"[MeSH Terms] OR ("guality"[All Fields] AND "indicators"[All Fields] AND "health" [All Fields] AND "care" [All Fields]) OR "health care quality indicators" [All Fields] OR ("quality"[All Fields] AND "indicators"[All Fields] AND "health"[All Fields] AND "care"[All Fields]) OR "quality indicators, health care"[All Fields]) OR ("programme evaluation"[All Fields] OR "program evaluation"[MeSH Terms] OR ("program"[All Fields] AND "evaluation"[All Fields]) OR "program evaluation"[All Fields]) OR ("reproducibility of results"[MeSH Terms] OR ("reproducibility"[All Fields] AND "results" [All Fields]) OR "reproducibility of results" [All Fields]) OR ("validation studies as topic"[MeSH Terms] OR ("validation"[All Fields] AND "studies"[All Fields] AND "topic"[All Fields]) OR "validation studies as topic"[All Fields])) AND ("2008/01/01"[PDat] : "2016/02/10"[PDat])

Question 2c: How can these efforts be implemented and the effects measured?

1/1/2008 - 02/10/2016: 202 results

02/10/2016 -04/30/2019: 198 results

("humans"[MeSH Terms] OR "humans"[All Fields] OR "human"[All Fields]) AND ("breast neoplasms"[MeSH Terms] OR ("breast"[All Fields] AND "neoplasms"[All Fields]) OR "breast neoplasms" [All Fields]) AND (("receptors, estrogen" [MeSH Terms] OR ("receptors" [All Fields] AND "estrogen"[All Fields]) OR "estrogen receptors"[All Fields] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "receptors, estrogen"[All Fields]) OR ("receptors, progesterone"[MeSH Terms] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "progesterone receptors"[All Fields] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "receptors, progesterone"[All Fields]) OR ("tumour markers" [All Fields] OR "biomarkers, tumor" [MeSH Terms] OR ("biomarkers" [All Fields] AND "tumor"[All Fields]) OR "tumor biomarkers"[All Fields] OR ("tumor"[All Fields] AND "markers"[All Fields]) OR "tumor markers" [All Fields]) OR ("biology" [MeSH Terms] OR "biology" [All Fields] OR "biological" [All Fields])) AND (("guideline"[Publication Type] OR "guidelines as topic"[MeSH Terms] OR "guideline"[All Fields]) OR ("practice guideline" [Publication Type] OR "practice guidelines as topic" [MeSH Terms] OR "practice guideline"[All Fields]) OR ("evaluation studies as topic"[MeSH Terms] OR ("evaluation"[All Fields] AND "studies" [All Fields] AND "topic" [All Fields]) OR "evaluation studies as topic" [All Fields]) OR ("programme evaluation" [All Fields] OR "program evaluation" [MeSH Terms] OR ("program" [All Fields] AND "evaluation" [All Fields]) OR "program evaluation" [All Fields]) OR ("outcome and process assessment (health care)"[MeSH Terms] OR ("outcome"[All Fields] AND "process"[All Fields] AND

"assessment"[All Fields] AND "(health"[All Fields] AND "care)"[All Fields]) OR "outcome and process assessment (health care)"[All Fields] OR ("outcome"[All Fields] AND "process"[All Fields] AND "assessment"[All Fields]) OR "outcome and process assessment"[All Fields]) AND ("delivery of health care"[MeSH Terms] OR ("delivery"[All Fields] AND "health"[All Fields] AND "care"[All Fields]) OR "delivery of health care"[All Fields] OR ("health"[All Fields] AND "care"[All Fields]) OR "delivery of health care"[All Fields] OR ("health"[All Fields] AND "care"[All Fields]) OR "health care"[All Fields] OR ("health"[All Fields] AND "care"[All Fields]) OR "health care"[All Fields] OR ("health"[All Fields]] OR "health care"[All Fields])) AND ("2008/01/01"[PDat] : "2016/02/10"[PDat])

New Testing Methods

("breast neoplasms"[MeSH Terms] OR ("breast"[All Fields] AND "neoplasms"[All Fields]) OR "breast neoplasms"[All Fields]) AND (("receptors, estrogen"[MeSH Terms] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "estrogen receptors"[All Fields] OR ("receptors"[All Fields] AND "estrogen"[All Fields]) OR "receptors, estrogen"[All Fields]) OR ("receptors, progesterone"[MeSH Terms] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "progesterone receptors"[All Fields] OR ("receptors"[All Fields] AND "progesterone"[All Fields]) OR "receptors, progesterone"[All Fields]) OR ("tumour markers"[All Fields] OR "biomarkers, tumor"[MeSH Terms] OR ("biomarkers"[All Fields]) OR ("tumour markers"[All Fields]) OR "tumor biomarkers"[All Fields] OR ("tumor"[All Fields] AND "markers"[All Fields]) OR "tumor markers"[All Fields]) OR ("biology"[MeSH Terms] OR ("biology"[All Fields] AND "markers"[All Fields]) OR "tumor markers"[All Fields] OR RT-qPCR[All Fields] OR "biology"[All Fields] OR "biological"[All Fields])) AND (ARRAY[All Fields] OR RT-qPCR[All Fields] OR nCounter[All Fields]) OR "messenger rna"[All Fields] OR "mrna"[All Fields])) AND ("2008/11/11"[PDAT] : "2018/11/08"[PDAT]) AND ((Clinical Trial[ptyp] OR Review[ptyp]) AND "humans"[MeSH Terms])

2008/11/11-2018/11/08: 387 results

2018/11/08-2019/04/30 : 4 results

Data Supplement 4: QUOROM Diagram

Data Supplement 5: Evidence Tables

Endocrine Therapy Response

First Author, Journal, Year	Title	Study Design	Conclusions
Regan, JCO, 2016 ²	Absolute Benefit of Adjuvant	The TEXT and SOFT hormone	SOFT patients who remained
	Endocrine Therapies for	receptor-positive, HER2-negative	premenopausal after chemotherapy
	Premenopausal Women With	analysis population included 4,891	experienced absolute improvement of
	Hormone Receptor–Positive, Human	women. The end point was breast	5% or more in 5-year BCFI with
	Epidermal Growth Factor Receptor 2–	cancer–free interval (BCFI), defined as	exemestane plus OFS versus
	Negative Early Breast Cancer: TEXT	time from random assignment to first	tamoxifen plus OFS or tamoxifen
	and SOFT Trials	occurrence of invasive locoregional,	alone, reaching 10% to 15% at
		distant, or contralateral breast cancer.	intermediate to high composite risk;
		A continuous, composite measure of	the benefit of tamoxifen plus OFS
		recurrence risk for each patient was	versus tamoxifen alone was apparent
		determined from a Cox model	at the highest composite risk. The
		incorporating age, nodal status, tumor	SOFT no-chemotherapy cohort—for
		size and grade, and estrogen receptor,	whom composite risk was lowest on
		progesterone receptor, and Ki-67	average—did well with all endocrine
		expression levels. Subpopulation	therapies. For TEXT patients, the
		treatment effect pattern plot	benefit of exemestane plus OFS versus
		methodology revealed differential	tamoxifen plus OFS in 5-year BCFI
		treatment effects on 5-year BCFI	ranged from 5% to 15%; patients not
		according to composite risk.	receiving chemotherapy and with
			lowest composite risk did well with
			both treatments.
Spring, JAMA Oncol, 2016 ³	Neoadjuvant Endocrine Therapy for	To evaluate the effect of neoadjuvant	The analysis included 20 studies with
	Estrogen Receptor-Positive Breast	endocrine therapy (NET) on the	3490 unique patients. Compared with
	Cancer: A Systematic Review and	response rate and the rate of breast	combination chemotherapy, NET as
	Meta-analysis	conservation surgery (BCS) for ER+	monotherapy with aromatase
		breast cancer. Based on PRISMA	inhibitors had a similar clinical
		guidelines, a librarian-led search of	response rate (OR, 1.08; 95% CI, 0.50-
		PubMed and Ovid MEDLINE was	2.35; P = .85; n = 378), radiological
		performed to identify eligible trials	response rate (OR, 1.38; 95% CI, 0.92-
		published from inception to May 15,	2.07; P = .12; n = 378), and BCS rate
		2015. The search was performed in	(OR, 0.65; 95% Cl, 0.41-1.03; P = .07; n
		May 2015. Study Selection: Inclusion	= 334) but with lower toxicity.
		criteria were prospective, randomized,	Aromatase inhibitors were associated
		neoadjuvant clinical trials that	with a significantly higher clinical
		reported response rates with at least	response rate (OR, 1.69; 95% Cl, 1.36-
		1 arm incorporating NET (n = 20). Two	2.10; P < .001; n = 1352), radiological
		authors independently analyzed the	response rate (OR, 1.49; 95% Cl, 1.18-

		studies for inclusion. Data Extraction and Synthesis: Pooled odds ratios (ORs), 95% Cls, and P values were estimated for end points using the fixed- and random-effects statistical model.	1.89; P < .001; n = 1418), and BCS rate (OR, 1.62; 95% CI, 1.24-2.12; P < .001; n = 918) compared with tamoxifen. Dual combination therapy with growth factor pathway inhibitors was associated with a higher radiological response rate (OR, 1.59; 95% CI, 1.04- 2.43; P = .03; n = 355), but not clinical response rate (OR, 0.76; 95% CI, 0.54- 1.07; P = .11; n = 537), compared with endocrine monotherapy. The incidence of pathologic complete response was law ($r10^{\circ}$)
Early Breast Cancer Trialists' Collaborative Group, Lancet, 2011 ⁵	Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials	We undertook a collaborative meta- analysis of individual patient data from 20 trials (n=21 457) in early breast cancer of about 5 years of tamoxifen versus no adjuvant tamoxifen, with about 80% compliance. Recurrence and death rate ratios (RRs) were from log-rank analyses by allocated treatment.	In estrogen receptor (ER)-positive disease (n=10 645), allocation to about 5 years of tamoxifen substantially reduced recurrence rates throughout the first 10 years (RR 0·53 [SE 0·03] during years 0–4 and RR 0·68 [0·06] during years 5–9 [both 2p<0·00001]; but RR 0·97 [0·10] during years 10–14, suggesting no further gain or loss after year 10). Even in marginally ER-positive disease (10–19 fmol/mg cytosol protein) the recurrence reduction was substantial (RR 0·67 [0·08]). In ER-positive disease, the RR was approximately independent of progesterone receptor status (or level), age, nodal status, or use of chemotherapy. Breast cancer mortality was reduced by about a third throughout the first 15 years (RR 0·71 [0·05] during years 0–4, 0·66 [0·05] during years 10–14; p<0·0001 for extra mortality reduction during each separate time period). Overall non-breast-cancer mortality was little affected, despite small absolute increases in thromboembolic and uterine cancer mortality (both only in

			women older than 55 years), so all-
			cause mortality was substantially
			reduced. In ER-negative disease,
			tamoxifen had little or no effect on
			breast cancer recurrence or mortality.
Khoshnoud, Breast Cancer Research	Immunohistochemistry compared to	The Stockholm Breast Cancer Study	The median follow-up was 17 years.
and Treatment, 2011 ⁶	cytosol assays for determination of	Group conducted a randomized trial	Six hundred eighty-three patients had
	estrogen receptor and prediction of	during 1976 through 1990 comparing	tumors with ER determined by both
	the long-term effect of adjuvant	adjuvant tamoxifen versus control.	methods, 536 (78.5%) were ER-
	tamoxifen	The patients were stratified according	positive by cytosol assays using the
		to tumor size and lymph node status	cutoff level at C0.05 fmol/lg DNA and
		in high-risk and low-risk groups. In this	539 patients were ER-positive (79%)
		study we evaluated 683 patients with	by IHC using the cutoff level at C10%
		"low risk" breast cancer (size B30 mm,	cell stained. Thirty-nine tumors (5.7%)
		lymph node negative) for whom ER	were ER-positive by cytosol but not by
		status had been determined by both	IHC, whereas the opposite pattern
		the cytosol assays and IHC at one	was found for 42 cases (6.1%). Only
		pathology laboratory.	seven tumors had stained cells
			between 0 and 9% by IHC. The
			concordance between IHC and cytosol
			assays was high (88%). The kappa
			statistic was 0.65, 95% CI 0.58–0.72.
			Among patients classified as ER-
			negative no therapeutic benefit from
			tamoxifen was observed. Among
			patients with ER-expressing tumors,
			tamoxifen resulted in significantly
			better recurrence-free survival
			irrespective of the method (IHC: HR,
			0.53, P<0.001; cytosol: HR, 0.53,
			P<0.001). The effect on overall
			survival was not statistically significant
			probably due to the limited sample
			size.

Kim, JCO, 2011 ⁷	Estrogen Receptor (ESR1) mRNA Expression and Benefit From Tamoxifen in the Treatment and Prevention of Estrogen Receptor– Positive Breast Cancer	We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials.	In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER- positive tumors with low levels of ESR1 expression.
Eljertsen, Ann Oncol, 2011 ⁸	Prognostic and predictive role of ESR1 status for postmenopausal patients with endocrine-responsive early breast cancer in the Danish cohort of the BIG 1-98 trial	ESR1 was assessed in 1129 (81%) of 1396 postmenopausal Danish women with early breast cancer randomly assigned to receive 5 years of letrozole, tamoxifen or a sequence of these agents in the Breast International Group 1-98 trial and who had ER >/= 1% after central review.	By FISH, 13.6% of patients had an ESR1-to-Centromere-6 (CEN-6) ratio >/= 2 (amplified), and 4.2% had ESR1- to-CEN-6 ratio <0.8 (deleted). Deletion of ESR1 was associated with significantly lower levels of ER (P < 0.0001) and PgR (P = 0.02) and more frequent HER2 amplification. ESR1 deletion or amplification was associated with higher-Ki-67 than ESR1-normal tumors. Overall, there was no evidence of heterogeneity of disease-free survival (DFS) or in treatment effect according to ESR1 status. However, significant differences in DFS were observed for subsets based on a combination of ESR1 and HER2 status (P = 0.02).

Dowsett, JCO, 2008 ⁹	Relationship between quantitative	Formalin-fixed, paraffin-embedded	Blocks were collected from 2,006 of
	estrogen and progesterone receptor	tumor blocks were retrospectively	5,880 eligible patients. Tissue was
	expression and human epidermal	collected from patients in the	assessable and ER and/or PgR
	growth factor receptor 2 (HER-2)	monotherapy arms of the Arimidex,	positivity confirmed centrally in 1,782
	status with recurrence in the	Tamoxifen Alone or in Combination	cases. In these, TTR was longer for
	Arimidex, Tamoxifen, Alone or in	(ATAC) trial and centrally tested for	anastrozole than for tamoxifen by a
	Combination trial	ER, PgR and HER-2. ER and PgR were	similar extent to that in the overall
		scored using continuous scales and	trial. None of the three biomarkers
		HER-2 was scored as 0 to 3+ with 2+	identified a set of patients with
		cases being analyzed by fluorescence	differential benefit from anastrozole
		in situ hybridization.	over tamoxifen. Patients with low ER,
			low PgR, and high HER-2 expression
			had a poorer prognosis with either
			drug. Only 2.6% of patients in the
			highest quartile of PgR experienced
			recurrence after 5 years, compared
			with 13.2% in the lowest quartile.

Low ER Positivity

First Author, Journal, Year	Title	Study Design	Conclusions
Landmann, Am J Clin Pathol, 2018 ²³	Low Estrogen Receptor (ER)-Positive Breast Cancer and Neoadjuvant Systemic Chemotherapy: Is Response Similar to Typical ER-Positive or ER- Negative Disease?	Human epidermal growth factor receptor 2-positive cases, cases without semiquantitative ER score, and patients treated with neoadjuvant endocrine therapy alone were excluded.	The pCR rate of low ER+ tumors was similar to the pCR rate of ER- tumors (37% and 26% for low ER and ER- respectively, P = .1722) but significantly different from the pCR rate of moderately ER+ (11%, P = .049) and high ER+ tumors (4%, P < .001). Patients with pCR had an excellent prognosis regardless of the ER status. In patients with residual disease (no pCR), the recurrence and death rate were higher in ER- and low ER+ cases compared with moderate and high ER+ cases.

Chen, Clinical Breast Cancer, 2017 ²⁴	Borderline ER-Positive Primary Breast Cancer Gains No Significant Survival Benefit From Endocrine Therapy: A Systematic Review and Meta-Analysis	We aimed at investigating differences in endocrine responsiveness, prognosis, and clinicopathological characteristics between the ER+ (1%- 9%) cohort and the ER- cohort or ER+ (≥10%) cohort. Eligible literature published from inception to November 20, 2016 was retrieved from the PubMed database on the basis of Preferred Reporting Items for Systematic Reviews and Meta- Analyses guidelines. Data on survival outcomes were extracted and pooled odds ratios (ORs), 95% confidence intervals (CIs), and 2-tailed P values are reported. P values of the c2 test for comparison of clinicopathological characteristics among included patients in the ER+ (1%-9%) cohort	The analysis included 6 studies with 16,606 patients. Significant differences were detected between the ER+ (1%-9%) cohort and the other 2 cohorts on the basis of clinicopathological characteristics respectively. When taking all of the patients into analysis without consideration of treatment modality, the ER+ (1%-9%) cohort presented better prognosis than the ER- group in terms of 5-year disease-free survival (OR, 1.47; P = .046) and 5-year overall survival (OR, 1.23; P = .046). However, patients with ER+ (1%-9%) breast cancer who received endocrine therapy seemed to have a prognosis similar to those without any endocrine therapy (P = .684) and those with ER-
		patients in the ER+ (1%-9%) cohort and the other 2 cohorts were calculated respectively.	therapy (P = .684) and those with ER- carcinoma who received endocrine therapy (P = .145). Patients with ER+ (\geq 10%) tumors had better endocrine responsiveness compared with their ER+ (1%-9%) counterparts (OR, 0.52; P = .034, ER+ [1%-9%] vs. ER+ [\geq 10%]).
Zhang, Histopathology, 2014 ²⁵	Pathological features and clinical outcomes of breast cancer according to levels of oestrogen receptor expression	Analyzed clinicopathological features in five subgroups based on ER expression levels in 1700 consecutive invasive breast cancer patients diagnosed and treated at our institution between 2000 and 2011.	Of the cases, 24% had ER expression <1%, 2% were ER 1–10%, 5% were 11– 50%, 5% were 51–70% and 64% were 71–100%. We observed four subgroups of patient cohorts (ER <1%, 1–10%, 11–70% and 71–100%) that were unique in Nottingham grade, nuclear grade, progesterone receptor expression and disease-free survival. Of the 341 patients with follow-up data, we found no significant differences in pathological features between patients in the ER 11–50% and ER 51–70% subgroups.

Gloyeske, AJCP, 2014 ²⁶	Low ER+ Breast Cancer Is This a Distinct Group?	Forty-nine ER+/HER2– invasive tumors with low ER expression (H-scores of 1- 100, representing approximately 5% of all tumors) were studied for various morphologic parameters, progesterone receptor (PR), and Ki-67 IHC.	Eighteen of 49 patients received neoadjuvant chemotherapy. The morphologic analysis showed that these tumors are often grade 3 and frequently demonstrate a sheet-like growth pattern, an intratumoral lymphocytic inflammatory infiltrate, and necrosis. Eighty percent of tumors showed a Ki-67 proliferation index of more than 50%, and 94% were PR–. Of the 18 patients who received neoadjuvant chemotherapy, six (33%) achieved pathologic complete response.
Balduzzi, Clinical Breast Cancer, 2014 ²⁷	Survival Outcomes in Breast Cancer Patients With Low Estrogen/Progesterone Receptor Expression	We retrospectively analyzed 1424 consecutive patients with HER2/neu- negative and low endocrine receptors expression early breast cancer, submitted to surgery at the European Institute of Oncology between January 1995 and December 2009. Patients were classified according to the percentage of ER/PgR expression using immunohistochemistry. Group 1 with ER/PgR < 1%, and group 2 with ER/PgR 1% to 10%.	Group 1 (ER/PgR < 1%) included 1300 patients, and group 2 (ER/PgR 1%- 10%) 124 patients. Median follow-up time was 74 months (range, 3-192 months). The 5-year disease-free survival (DFS) rate was 74% (95% confidence interval [CI], 72%-77%) for group 1, and 79% (95% CI, 70%-86%) for group 2 (P ¼ .16). The 5-year overall survival (OS) rate was 86% (95% CI, 84%-88%) in group 1 and 90% (95% CI, 83%-95%) in group 2 (P = .13). In patients without lymph node involvement, the 5-year OS rate was 92% (95% CI, 89.5%-93.6%) for group 1 and 98% (95% CI, 90.2%-99.8%) for group 2 (P = .061). One hundred ten patients received endocrine therapy with no significant effect on DFS (P = .36) and OS (P = .30).

Vi Annals of Oncology 201128	Which threshold for EP positivity?	The study population consisted of	Of 9639 nationts included 80 5% had
Th, Annais of Oncology, 2014	retrespective study based on 0620	nationts with primary broast	tumors that were EP positive >10%
	nationts	earcinement reasted at our conter from	2.6% had tumors that were ER-positive 210%,
	patients	Lanuary 1000 to December 2011 and	2.0% had fullors that were ER-
		January 1990 to December 2011 and	positive 1%-9% and 10.9% had turnors
		whose records included complete data	That were ER-negative. Patients with
		on ER status. Patients were separated	ER-positive 1%–9% tumors were
		Into three groups: ≥10% positive	younger with more advanced disease
		staining for ER (ER-positive $\geq 10\%$),	compared with patients with ER-
		1%–9% positive staining for ER (ER-	positive ≥10% tumors. At a median
		positive 1%–9%) and <1% positive	follow-up of 5.1 years, patients with
		staining (ER-negative).	ER-positive 1%–9% tumors had worse
			survival rates than did patients with
			ER-positive $\geq 10\%$ tumors, with and
			without adjustment for clinical
			stage and grade. Survival rates did not
			differ significantly between patients
			with ER-positive 1%–9% and ER-
			negative tumors.
Deyarmin, Annals of Surgical	Effect of ASCO/CAP Guidelines for	Clinicopathological characteristics	Low-ER-staining tumors were
Oncology, 2013 ²⁹	Determining ER Status on Molecular	were compared between ER-negative,	clinicopathologically more similar to
	Subtype	ER-positive, and low-ER staining (1–10	ER-negative than to ER-positive
		%) tumors using chi-square analysis	tumors; 88 % of low-staining tumors
		with P<0.05 defining statistical	were basal like or HER2 enriched. Only
		significance. Gene expression data	those tumors expressing 10 % ER-
		were generated for 26 low-ER-staining	positive cells were classified as luminal
		tumors, and their intrinsic subtype	A subtype.
		determined. Immunohistochemistry	
		(IHC)-defined surrogate subtypes,	
		using the threshold of positivity	
		defined by ASCO/CAP guidelines, were	
20		compared with molecular subtypes.	
Reisenbichler, AJCP, 2013 ³⁰	Interobserver Concordance in	We report interobserver concordance	With both antibodies, 3% to 4% of
	Implementing the 2010 ASCO/CAP	manually measuring ER in 264 breast	cases have a low level of ER
	Recommendations for Reporting ER in	cancers using ER-SP1 and 1D5 and 2	expression (1%-10%), more than
	Breast Carcinomas	scoring methods (H-score and Allred	previously reported (<1%). We find a
		score).	high level of paired observer
			concordance with both antibodies and
			scoring methods (k = 0.892-0.943)
			with no significant difference with
			method of scoring. Despite excellent
			concordance, positive/negative

			discordance was almost 5% among 3 observers using either antibody, an underappreciated clinically significant rate.
Iwamoto, JCO, 2012 ³¹	Estrogen Receptor (ER) mRNA and ER- Related Gene Expression in Breast Cancers That Are 1% to 10% ER- Positive by Immunohistochemistry	ER status was determined by IHC in 465 primary breast cancers and with the Affymetrix U133A gene chip. We compared expressions of ESR1 mRNA and a 106-probe set ER-associated gene signature score between ER- negative (n = 183), 1% to 9% (n = 25), 10% (n = 6), and more than 10% (n = 251) ER-positive cancers. We also assessed the molecular class by using the PAM50 classifier and plotted survival by ER status.	Among the 1% to 9%, 10%, and more than 10% ER IHC–positive patients, 24%, 67%, and 92% were also positive by ESR1 mRNA expression. The average ESR1 expression was significantly higher in the \ge 10% ER- positive cohorts compared with the 1% to 9% or ER-negative cohort. The average ER gene signature scores were similar for the ER-negative and 1% to 9% IHC-positive patients and were significantly lower than in \ge 10% ER-positive patients. Among the 1% to 9% ER-positive patients, 8% were luminal B and 48% were basal-like; among the 10% ER-positive patients, 50% were luminal. The overall survival rate of 1% to 9% ER-positive patients with cancer was between those of patients in the \ge 10% ER-positive and ER-negative groups.
Raghav, Cancer, 2012 ³²	Impact of Low Estrogen/Progesterone Receptor Expression on Survival Outcomes in Breast Cancers Previously Classified as Triple Negative Breast Cancers	In a retrospective review, 1257 patients were categorized according their ER/PR percentages into 3 groups, ER/PR <1% (group A), ER/PR 1% to 5% (group B), and ER/PR 6% to 10% (group C). Kaplan-Meier product limit method was used to estimate survival outcomes. Cox proportional hazards models were used to adjust for patient and tumor characteristics.	Groups A, B, and C had 897 (71.4%), 241 (19.2%), and 119 (9.4%) patients, respectively. After a median follow-up of 40 months there was no significant difference in 3-year recurrence-free survival (RFS): 64%, 67%, and 77% (P = .34) or overall survival (OS): 79%, 81%, and 88% (P = .33) for groups A, B, and C, respectively. ER/PR expression was not an independent predictor for RFS (hazard ratio [HR], 1.10; 95% confidence interval [CI], 0.86-1.39; P = .46 for group B, and HR, 0.96; 95% CI, 0.66-1.38; P = .81 for group C, compared with group A), or OS (HR, 1.11; 95% CI, 0.84-1.46; P =

	.46 for group B, and HR, 0.94; 95% CI,
	0.63-1.42; P = .78 for group C,
	compared with group A). Endocrine
	therapy had no impact on survival
	outcomes (RFS: P = .10; OS: P = .45)
	among groups.

ER-/PgR+ or ER+/PgR-	
First Author, Journal, Year	Title
Kuroda, Breast Cancer, 2019 ³³	Oestrogen receptor- negative/progesterone recep positive phenotype of invasiv carcinoma in Japan: re-evalue using immunohistochemical

First Author, Journal, Year	Title	Study Design	Conclusions
Kuroda, Breast Cancer, 2019 ³³	Oestrogen receptor- negative/progesterone receptor- positive phenotype of invasive breast carcinoma in Japan: re-evaluated using immunohistochemical staining	We selected patients who underwent surgery for primary breast carcinoma from our databases at Dokkyo Medical University Hospital and Kameda General Hospital. Among the 9844 patients, the largest series in Japan, 27 (0.3%) were initially diagnosed as ER- /PgR+ breast carcinomas and we re- evaluated by IHC.	The re-evaluated IHC showed that of the 27 patients with the initial results of ER-/PgR+, 12 were ER+/PgR+, 8 were ER-/PgR-, and 7 were ER-/PgR+. ER was negative in 12 of 27 patients (44.4%), and PgR was positive in 8 of 27 patients (29.6%). In our seven re- evaluated and confirmed as ER-/PgR+ cases, the staining proportions of tumor cells were 0% in ER and 1-69% (average 15.8%) in PgR. The average staining proportion of PgR in the re- evaluated ER-/PgR+ phenotype was lower than the initial diagnosis. Histological grading was as follows: grade I, one case; grade II, two cases; grade III, four cases. There were two lymph-node-positive cases.
Foley, Pathol Oncol Res, 2018 ³⁴	Re-Appraisal of Estrogen Receptor Negative/Progesterone Receptor Positive (ER-/PR+) Breast Cancer Phenotype: True Subtype or Technical Artefact?	The aim of this study was to investigate the true incidence and clinico-pathological features of ER- /PR+ breast cancers in a tertiary referral symptomatic breast unit. Clinico-pathological data were collected on invasive breast cancers diagnosed between 1995 and 2005. IHC for ER and PR receptors was repeated on all cases which were ER- /PR+, with the same paraffin block used for the initial diagnostic testing. Concordance between the diagnostic	Complete data, including ER and PR status were available for 697 patients diagnosed during the study period. On diagnostic IHC, the immunophenotype of the breast tumors was: ER+/PR+ in 396 (57%), ER-/PR- in 157 (23%), ER+/PR- in 88 (12%) and ER-/PR+ in 56 (8.6%) patients. On repeat IHC of 48/56 ER-/PR+ tumors 45.8% were ER+/PR+, 6% were ER+/PR- and 43.7% were ER-/PR- None of the cases were confirmed to be ER-/PR+. The ER-/PR+ phenotypic breast cancer is likely to be the result of technical artefact.

		and repeat IHC was determined using	
		validated testing.	
Ahmed, J Clin Pathol, 2017 ³⁵	Clinicopathological characteristics of oestrogen receptor negative, progesterone receptor positive breast cancers: re-evaluating subsets within this group	We investigated 267 archival documented ER(-)/PR(+) BCs diagnosed between January 1994 and July 2009. Histological slides were retrieved and reviewed. Tissue microarrays were constructed by selecting two 1 mm cores of tumour per case. Repeat immunohistochemistry was performed for confirmation of the ER(-)/PR(+) status. Clinicopathological parameters including age, ethnicity, tumour size, histological grade, histological subtype, associated ductal carcinoma in situ, lymphovascular invasion and lymph node status were	On repeat immunohistochemistry, 92 tumors were confirmed as ER(-)/PR(+) BCs. This phenotype accounted for 1.1% of all BC phenotypes and exhibited different clinicopathological features and survival outcome when compared with other phenotypes. ER(-)/PR(+) tumors showed a trend for an early recurrence and poorer overall survival as compared with the patients with ER(+)/PR(+) tumors and similar to ER(-)/PR(-) tumors.
D D110 0 0015 ²⁶		evaluated.	
Bae, BMC Cancer, 2015 ³⁶	Poor prognosis of single hormone receptor- positive breast cancer: similar outcome as triple-negative breast cancer	We examined the clinical and biological features of 6,980 women with invasive ductal carcinoma, and these patients were stratified according to ER and PR expression as double HR+ (ER + PR+), single HR+ (ER + PR- and ER-PR+) and double HR- negative (HR-, ER-PR-) tumors.	In this study, 571 (8.2%) cases were single HR+ tumors, of which 90 (1.3%) were ER-PR+ tumors and 481 (6.9%) were ER + PR- tumors. Our multivariate analysis showed that in patients without HER2 overexpression ER + PR- tumors were associated with an increased risk of recurrence and death compared with ER + PR+ tumors, with a hazard ratio of 2.12 for disease-free survival (DFS) and 4.79 for overall survival (OS). In patients without HER2 overexpression ER-PR+ tumors had increased risk of recurrence and death compared with ER + PR+ tumor, with a hazard ratio of 4.19 for DFS and 7.22 for OS. In contrast, in patients with HER2 overexpression, the difference in survival between single HR+ tumors and double HR+ HR- tumors was not statistically significant. In patients

			without HER2 overexpression the DFS and OS of ER + PR- and ER-PR+ tumors were not significantly different from those of ER-PR- tumors
Knoop, Eur J Cancer, 2014 ³⁷	Estrogen receptor, Progesterone receptor, HER2 status and Ki67 index and responsiveness to adjuvant tamoxifen in postmenopausal high- risk breast cancer patients enrolled in the DBCG 77C trial	Between 1977 and 1982, 1716 postmenopausal patients with tumours larger than 5cm or positive axillary nodes were randomly assigned to no systemic therapy or tamoxifen 30mg daily for one year. Archival tumour tissue from 1515 patients was analysed and the hormone receptor positive (estrogen receptor (ER) and/or progesterone receptor (PR)) cancers were defined as luminal A if Ki67 low and HER2-negative; as luminal B if Ki67 high or HER2- positive; and otherwise as non- luminal-HER2 positive or triple negative.	In the intent-to-treat (ITT) population one year of tamoxifen improved the disease-free-survival (DFS) (hazard ratio (HR)=0.87; 95% confidence interval (CI) 0.77-0.98), the Breast Cancer Recurrence Rate (BCRR) (HR=0.79; 0.69-0.90) and reduced the breast-cancer-specific-mortality (BCM) (HR=0.83; 0.73-0.93). BCRR were improved significantly by tamoxifen in luminal A (HR=0.66; 0.53-0.84) and luminal B/HER2- (HR=0.54; 0.39-0.74) but not in the other subsets, and with similar results for BCM with 30 years follow-up.
Cserni, Pathol Oncol Res, 2011 ³⁸	Estrogen receptor negative and progesterone receptor positive breast carcinomas-how frequent are they?	The authors were asked to collect 500 to 1,000 breast carcinoma cases with ER and PR status from institutional databases of 8 Hungarian pathology or related oncology departments. These were classified according to their receptor statuses and the ER-PR+ cases were looked at again.	A total of 205/6587 (3.1%; range of the rate per department: 0.3–7.1%.) cases reported to have the ER- negative and PR-positive status by immunohistochemistry were collected from 9 Hungarian departments. After careful reevaluation of the tumor slides and control tissues with a 1% cut-off for positivity and restaining of the questionable cases, all but 1 of the reevaluable 182 cases changed their original phenotype. Most cases converted to dual positives (n=124) or dual negatives (n=31) or unassessable / questionable.
Albert, Cancer, 2011 ³⁹	Patients With Only 1 Positive Hormone Receptor Have Increased Locoregional Recurrence Compared With Patients With Estrogen Receptor- Positive Progesterone Receptor-	The authors retrospectively reviewed records of 635 patients with T1a,bN0 disease who received definitive treatment at their institution between 1997 and 2002 and had archival tissue	LR recurrence rates were higher in patients with 1 receptor positive compared with ERþ/PRþ (7-year rate: 8.8% vs 2.5%, P = .024). There was no difference between the 2 groups in
		DIDUKS IDI PLOSPECTIVE assessment OI	ine rates of distant metastasis (DIVI) (P

Positive Disease in Very Early Stage	ER/PR expression. They compared	= .531) or overall survival (P = .491).
Breast Cancer	clinical outcomes of the 479 patients	One positive receptor predicted for LR
	with ER+/PR+ disease to the 156	recurrence in patients who did not
	patients with ER+/PR- or ER-/PR+	receive hormonal therapy (P = .046),
	disease.	but not in patients who received
		hormonal therapy (P = .296). On
		multivariate analysis, 1 positive
		receptor predicted for LR recurrence
		in the overall group (hazard ratio,
		2.81; 95% confidence interval, 1.06-
		7.48; P = .038).

Ρ	gR	Υ	es	ti	n	g
	0.					0

First Author, Journal, Year	Title	Study Design	Conclusions
Ahn, Endocrine-Related Cancer, 2019 ⁴⁰	Low PR in ER(+)/HER2(–) breast cancer: high rates of TP53 mutation and high SUV	This study included 272 patients surgically treated for ER-positive, HER2-negative breast cancer and who had undergone TP53 gene sequencing. Of these, 229 patients also underwent 18F-FDG PET or PET/CT. Mutational analysis of exons 5–9 of the TP53 gene was conducted using PCR amplification and direct sequencing. The SUVs were measured using 18F- FDG-PET scan images.	Twenty-eight (10.3%) tumors had a somatic TP53 mutation. The TP53 mutation rate was significantly higher in low-PR tumors than in high-PR tumors (17.1% vs 7.9%, P = 0.039). Low-PR tumors had significantly higher median SUVs than high-PR tumors (P = 0.046). The multivariable analysis revealed that SUV and age remained independent variables associated with low PR expression. An adverse impact of low PR expression on recurrence-free survival was observed in the multivariable Cox regression hazard model.

Prat ICO 2012	Prognostic Significance of	Gene expression and nathologic	Cliniconathologic comparisons among
	Progesterone Recentor-Positive	features were collected from primary	luminal A and B subtynes consistently
	Tumor Colls Within	tumors across five independent	identified higher rates of DP positivity
			identified fligher fales of PK positivity,
	Immunohistochemically Defined	cohorts: British Columbia Cancer	human epidermal growth factor
	Luminal A Breast Cancer	Agency (BCCA) tamoxifen-treated	receptor 2 (HER2) negativity, and
		only, Grupo Espanol de Investigacion	histologic grade 1 in luminal A tumors.
		en Cancer de Mama 9906 trial, BCCA	Quantitative PR gene and protein
		no systemic treatment cohort, PAM50	expression were also found to be
		microarray training data set, and a	significantly higher in luminal A
		combined publicly available	tumors. An empiric cutoff of more
		microarray data set. Optimal cutoffs	than 20% of PR-positive tumor cells
		of percentage of progesterone	was statistically chosen and proved
		receptor (PR) –positive tumor cells to	significant for predicting survival
		predict survival were derived and	differences within IHC-defined luminal
		independently tested. Multivariable	A tumors independently of endocrine
		Cox models were used to test the	therapy administration. Finally, no
		prognostic significance.	additional prognostic value within
			hormonal receptor (HR)
			–positive/HER2-negative disease was
			observed with the use of the IHC4
			score when intrinsic IHC-based
			subtypes were used that included the
			more than 20% PR-positive tumor cells
			and vice versa.

I ISSUE IVIILI UALLAV

noode more and y	
First Author, Journal, YearTitleStudy D	Design Conclusions
Viale, Breast Cancer Res Treat, 2017 ⁴¹ Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial MS class subtype 2-, and R the Euror = 5806). metasta subtype chemotical versus for the Euror = 5806). metasta subtype chemotical versus for diguv	 PS Luminal cancers classified as HER- 2+ or Basal-type by MS did not have a significantly lower DMFS than the Luminal-type cancers by MS (95.9%): HR = 1.40, 95% CI 0.75-2.60 (p = 0.294). More patients were identified with Luminal A disease by MS (63%) as compared with PS (47%) with comparable 5-year DMFS (>/=96.0%). Among the 500 patients with PS TN cancers, MS identified 24 (5%) patients as Luminal-type with 5-year DMFS estimated at 100% versus 71.4%

			for MS HEB-2+ or 90 1% for MS Basal-
Zarolla Laboratory Investigation	Automated measurement of estregen	Here we compare three methods of	Ronroducibility was excellent
	Automated measurement of estrogen	FR detection and assessment on two	(P240.0E) between users for both
2010	receptor in preast cancer: a	ER detection and assessment on two	(R240.95) between users for both
	comparison of fluorescent and	retrospective tissue microarray (TNA)	automated analysis methods, and the
	chromogenic methods of	conorts of breast cancer patients:	Aperio and QIF scoring results were
	measurement	estimates of percent nuclei positive by	also highly correlated, despite the
		pathologists and by Aperio's nuclear	different detection systems. The
		algorithm (standard chromogenic	subjective readings show lower levels
		immunostaining), and	of reproducibility and a discontinuous,
		immunofluorescence as quantified	bimodal distribution of scores not
		with the automated quantitative	seen by either mechanized method.
		analysis (AQUA) method of	Kaplan–Meier analysis of 10-year
		quantitative immunofluorescence	disease-free survival was significant
		(QIF).	for each method (Pathologist, P=
			0.0019; Aperio, P= 0.0053, AQUA, P=
			0.0026); however, there were
			discrepancies in patient classification
			in 19 out of 233 cases analyzed. Out of
			these 11 were visually positive by
			both chromogenic and fluorescent
			detection In 10 cases the Aperio
			nuclear algorithm labeled the nuclei as
			nuclear algorithm labeled the nuclei as
			negative, in I case, the AQUA score
			(determined by an index TMA) in
			(determined by an index TMA). In
			contrast, 8 out of 19 discrepant cases
			had clear nuclear positivity by
			fluorescence that was unable to be
			visualized by chromogenic detection,
			perhaps because of low positivity
			masked by the hematoxylin
			counterstain.
Viale, Breast Cancer Research and	Discordant assessment of tumor	The purpose of this preplanned	Gene-expression data were obtained
Treatment, 2016 ⁴³	biomarkers by histopathological and	translational research is to investigate	by TargetPrint; IHC and/or FISH were
	molecular assays in the EORTC	the correlation of central IHC/FISH	assessed centrally (n = 5788; 86 %).
	randomized controlled 10041/BIG 03-	assessments with microarray mRNA	Macroscopic and microscopic
	04 MINDACT trial breast cancer :	readouts of ER, PgR, and HER-2 status	evaluation of centrally submitted FFPE
	Intratumoral heterogeneity and DCIS	in the MINDACT trial and to determine	blocks identified 1427 cases for which
	or normal tissue components are	if any discordance could be attributed	the very same sample was submitted
		to intratumoral heterogeneity or the	for gene-expression analysis.

	unlikely to be the cause of	DCIS and normal tissue components in	TargetPrint ER had a positive
	discordance	the specimens. MINDACT is an	agreement of 98 %, and a negative
		international, prospective,	agreement of 95 % with central
		randomized, phase III trial	pathology. Corresponding figures for
		investigating the clinical utility of	PgR were 85 and 94 % and for HER-2
		MammaPrint in selecting patients with	72 and 99 %. Agreement of mRNA
		early breast cancer for adjuvant	versus central protein was not
		chemotherapy (n = 6694 patients).	different when the same or a different
			portion of the tumor tissue was
			analyzed or when DCIS and/or normal
			tissue was included in the sample
			subjected to mRNA assays.
Wesseling, Virchows Arch, 2016 ⁴⁴	An international study comparing	To compare results from messenger	TargetPrint readout showed a high
	conventional versus mRNA level	RNA (mRNA)-based TargetPrint testing	concordance with IHC/ISH of 95 %
	testing (TargetPrint) for ER, PR, and	with those from	(kappa 0.81) for ER, 81 % (kappa 0.56)
	HER2 status of breast cancer	immunohistochemistry (IHC) and in	for PR, and 94 % (kappa 0.76) for
		situ hybridization (ISH) conducted	HER2. The positive/negative
		according to local standard	agreement between TargetPrint and
		procedures at hospitals worldwide.	IHC for ER, PR, and HER2 was 96 %/87
		Tumor samples were prospectively	%, 84 %/74 %, and 74 %/98 %,
		obtained from 806 patients at 22	respectively. The concordance rate in
		hospitals. The mRNA level of estrogen	IHC/ISH results between hospitals
		receptor (ER), progesterone receptor	varied: 88-100 % for ER (kappa 0.50-
		(PR), and human epidermal growth	1.00); 50-100 % for PR (kappa 0.20-
		factor receptor 2 (HER2) was assessed	1.00); and 90-100 % for HER2 (kappa
		by TargetPrint quantitative gene	0.59-1.00). mRNA readout of ER, PR,
		expression readouts. IHC/ISH	and HER2 status by TargetPrint was
		assessments were performed	largely comparable to local IHC/ISH
		according to local standards at the	analysis. However, there was
		participating hospitals.	substantial discordance in IHC/ISH
			results between different hospitals.
Dekker, Breast Cancer Research and	Quality assessment of estrogen	Formalin-fixed paraffin-embedded	When a discordant result was found
Treatment, 2015 ⁴⁵	receptor and progesterone receptor	(FFPE) tumor blocks were collected for	between the local and TMA result, the
	testing in breast cancer using a tissue	TMA construction from nine	original testing slide was revised and
	microarray-based approach	laboratories in the Netherlands. The	staining was repeated on a whole-
		tissue blocks contained invasive breast	tissue block. Sensitivity and specificity
		carcinomas that were previously	of individual laboratories for testing
		tested for ER, PR, and/ or HER2	estrogen receptor expression were
		expression by immunohistochemistry	high, with an overall sensitivity of 99.7
		as part of routine pathological	and 95.4 %, respectively. Overall
		diagnostics.	sensitivity and specificity of

			progesterone receptor testing were 94.8 and 92.6 %, respectively. Out of 96 discordant cases, 36 cases would have been concordant if the recommended cut-off value of 1 % instead of 10 % was followed. Overall sensitivity and specificity of estrogen and progesterone receptor testing were high among participating laboratories.
Viale, Annals of Oncology, 2014 ⁴⁶	High concordance of protein (by IHC), gene (by FISH; HER2 only), and microarray readout (by TargetPrint) of ER, PgR, and HER2: results from the EORTC 10041/BIG 03-04 MINDACT trial	Data from local (N = 800) and central (N = 626) assessments of receptor status were collected and compared with TargetPrint results.	For ER, the positive agreement (the percentage of central pathology positive assessments that were also TargetPrint/local laboratory positive) for TargetPrint in comparison to centralized assessment was 98% with a negative agreement (the percentage of central pathology negative assessments that were also TargetPrint/local laboratory negative) of 96%. For PgR, the positive agreement was 83% with a negative agreement of 92%. For HER2, the positive agreement was 75% with a negative agreement of 99%. Even though the local assessment showed higher positive agreement for PgR (89%) and higher positive agreement for HER2 (85%), the range of discordant local versus central assessments were as high as 6.7% for ER, 12.9% for PgR, and 4.3% for HER2.
Karn, Breast Cancer Research and Treatment, 2010 ⁴⁷	Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer	We have analyzed influences of these strategies using a pool of 3,030 Affymetrix U133A microarrays from breast cancer samples. We present data on the resulting concordance with biochemical assays of well known parameters and highlight critical pitfalls. We further propose a method for the inference of cutoff values	The cutoffs derived by this method displayed high specificity and sensitivity. Markers with a bimodal distribution like ER, PgR, and HER2 discriminate different biological subtypes of disease with distinct clinical courses. In contrast, markers displaying a continuous distribution like proliferation markers as Ki67

Bordeaux, PLoS One, 2012 ⁴⁸	Quantitative In Situ Measurement of Estrogen Receptor mRNA Predicts Response to Tamoxifen	directly from the data without prior knowledge of the true result. Messenger RNA for ER (ESR1) and Ubiquitin C (UbC) were visualized using RNAscope probes and levels	rather describe the composition of the mixture of cells in the tumor. ESR1 mRNA is reproducibly and specifically measurable by qISH on tissue collected from 1993 or later.
		were quantified by quantitative in situ hybridization (qISH) on two Yale breast cancer cohorts on tissue microarrays. ESR1 levels were compared to ER protein levels measured by QIF using the SP1 antibody.	ESR1 levels were correlated to ER protein levels in a non-linear manner on two Yale cohorts. High levels of ESR1 were found to be predictive of response to tamoxifen.
Welsh, JCO, 2011 ⁴⁹	Standardization of Estrogen Receptor Measurement in Breast Cancer Suggests False-Negative Results Are a Function of Threshold Intensity Rather Than Percentage of Positive Cells	An assay was developed to quantify ER by using a control tissue microarray (TMA) and a series of cell lines in which ER immunoreactivity was analyzed by quantitative immunoblotting in parallel with the automated quantitative analysis (AQUA) method of quantitative immunofluorescence (QIF). The assay was used to assess the ER protein expression threshold in two independent retrospective cohorts from Yale and was compared with traditional methods.	Two methods of analysis showed that change in percentage of positive cells from 10% to 1% did not significantly affect the overall number of ER- positive patients. The standardized assay for ER on two Yale TMA cohorts showed that 67.9% and 82.5% of the patients were above the 2-pg/µg immunoreactivity threshold. We found 9.1% and 19.7% of the patients to be QIF-positive/IHC- negative, and 4.0% and 0.4% to be QIF-negative/IHC-positive for a total of 13.1% and 20.1% discrepant cases when compared with pathologists' judgment of threshold. Assessment of survival for both cohorts showed that patients who were QIF- positive/pathologist-negative had outcomes similar to those of patients who had positive results for both assays.

mRNA

First Author, Journal, Year	Title	Study Design	Conclusions
Wilson, Breast Cancer Res Treat, 2014 ⁵⁰	Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples	We developed a Random Forests- based algorithm using a training set of 158 samples with centrally confirmed IHC status, and subsequently validated	We observed a strong correlation between target mRNA expression and IHC assays for HER2 and ER, achieving an overall accuracy of 97 and 96 %,

	this algorithm on multiple test sets	respectively. For determining PR
	with known, locally determined IHC	status, which had the highest
	status.	discordance between central and local
		IHC, incorporation of expression of co-
		regulated genes in a multivariate
		approach added predictive value,
		outperforming the single, target gene
		approach by a 10 % margin in overall
		accuracy.

RT-PCR			
First Author, Journal, Year	Title	Study Design	Conclusions
Cai, Breast Cancer Research and Treatment, 2018 ⁵¹	A qualitative transcriptional signature to reclassify estrogen receptor status of breast cancer patients	From the gene pairs with signifcantly stable REOs in ER+ samples and reversely stable REOs in ER- samples, concordantly identifed from four datasets, we extracted a signature to determine a sample's ER status through evaluating whether the REOs within the sample signifcantly match with the ER+ REOs or the ER- REOs.	A signature with 112 gene pairs was extracted. It was validated through evaluating whether the reclassified ER+ or ER- patients could benefit from tamoxifen therapy or neoadjuvant chemotherapy. In three datasets for IHC-determined ER+ patients treated with post-operative tamoxifen therapy, 11.6–12.4% patients were reclassified as ER- by the signature and, as expected, they had significantly worse recurrence-free survival than the ER+ patients confirmed by the signature. On another hand, in two datasets for IHC- determined ER- patients treated with neoadjuvant chemotherapy, 18.8 and 7.8% patients were reclassified as ER+ and, as expected, their pathological complete response rate was significantly lower than that of the other ER- patients confirmed by the signature .
Wu, Breast Cancer Research and	Comparison of central laboratory	FFPE tissue sections from 523 patients	Concordance between STRAT4 and
Treatment, 2018 ⁵²	assessments of ER, PR, HER2, and Ki67	were sent to a College of American	IHC was 97.8% for ESR1, 90.4% for
	by IHC/FISH and the corresponding	Pathologists-certified central	PGR, 93.3% for ERBB2 (IHC/FISH for
	mRNAs (ESR1, PGR, ERBB2, and	reference laboratory to evaluate	HER2), and 78.6% for MKi67. Receiver
	MKi67) by RT-qPCR on an automated,	concordance between IHC/FISH and	operating characteristic curve (ROC)
	broadly deployed diagnostic platform	STRAT4 using the laboratory's	area under the curve (AUC) values of

Hyeon, Journal of Breast Cancer, 2017 ⁵³	NanoString nCounter® Approach in Breast Cancer: A Comparative Analysis with Quantitative Real-Time Polymerase Chain Reaction, In Situ Hybridization, and Immunohistochemistry	standard of care methods. A subset of 155 FFPE specimens was tested for concordance with STRAT4 using different IHC antibodies and scoring methods. Data on IHC/FISH results for ER, PR, and HER2 in 240 patients from a single tertiary hospital in Korea were collected and compared with NanoString nCounter [®] and qRT-PCR results at a single institution.	0.99, 0.95, 0.99, and 0.85 were generated for ESR1, PGR, ERBB2, and MKi67, respectively. Minor variabilities were observed depending on the IHC antibody comparator used. Expression levels for each gene using NanoString nCounter [®] showed good correlation with the corresponding data for protein expression by IHC (p<0.001) and gene amplification status for HER2 (p<0.001). Comparisons between gene expression and IHC data showed good overall agreement with a high area under the curve (AUC) for ESR1/ER (AUC=0.939), PgR/PR (AUC= 0.796), and HER2/HER2 (AUC=0.989) (p<0.001).
Varga, Breast Cancer Research, 2017 ⁵⁴	An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper®	Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin- fixed, paraffin-embedded breast cancer specimens with the MammaTyper [®] test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs).	Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980–0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00.
Wirtz, Breast Cancer Res Treat, 2016 ⁵⁵	Biological subtyping of early breast cancer: a study comparing RT-qPCR with immunohistochemistry	We compared RT-qPCR with IHC in the assessment of Ki-67 and other standard factors used in breast cancer subtyping. RNA was extracted from archival breast tumour tissue of 769 women randomly assigned to the	The results were correlated with distant disease-free survival (DDFS) and overall survival (OS). qPCR-based and IHCbased assessments of ER and PgR showed good concordance. Both low tumour MKI67 mRNA (RT-qPCR)

		FinHer trial. Cancer ESR1. PGR. ERBB2	and Ki-67 protein (IHC) levels were
		and MKI67 mRNA content was	prognostic for favourable DDFS
		quantitated with an RT-gPCR assay	(hazard ratio [HB]) 0.42, 95 % CI 0.25-
		Local nathologists assessed FR PgR	0.71 P = 0.001: and HB 0.56, 0.37–
		and Ki-67 expression using IHC	0.84 P = 0.005 respectively) and OS
			In multivariable analyses cancer
			MKI67 mBNA content had
			independent influence on DDES
			(adjusted HR 0 51 95 % CL 0 29-0 89
			(aujusteu + 10.051, 95% ct 0.25-0.05), R = 0.010 while Ki67 protoin
			P = 0.019) while Rio/ protein
			expression had not any initialize $(P = 0.2CC)$ whereas both assessments
			0.200) whereas both assessments
			Influenced Independently OS. Luminal
			B patients treated with docetaxel-FEC
			had more favourable DDFS and US
			than those treated with vinoreibine-
			FEC when the subtype was defined by
			RT-qPCR (for DDFS, HR 0.52, 95 % CI
			0.29-0.94, P = 0.031), but not when
			defined using IHC. Breast cancer
			subtypes approximated with RT-qPCR
			and IHC show good concordance, but
			cancer MKI67 mRNA content
			correlated slightly better with DDFS
			than Ki-67 expression.
Sheffield, Breast Cancer Research and	Molecular subtype profiling of invasive	Consecutive cases of breast cancer	148 cases were included in the series:
Treatment, 2016 ⁵⁶	breast cancers weakly positive for	treated by primary surgical resection	60 cases originally diagnosed as ER
	estrogen receptor	were retrospectively identified from4	weakly positive and 88 ER negative. Of
		centers that engage in routine	the cases originally assessed as ER
		external proficiency testing for breast	weakly positive, only 6 (10 %) were
		biomarkers. ER-negative (Allred 0 and	confirmed to be of luminal subtype by
		2) and ER weakly positive (Allred 3–5)	gene expression profiling; the
		cases were included. Gene expression	remaining 90 % of cases were
		profiling was performed using qRT-	classified as basal-like or HER2-
		PCR. Intrinsic subtype prediction was	enriched subtypes. This was not
		made based upon the PAM50 gene	significantly different than the fraction
		expression signature.	of luminal cases identified in the IHC
			ER-negative cohort (5 [5%]) luminal.
			83 (95%) nonluminal). Recurrence-
			free, and overall, survival rates were
			similar in both groups ($p = 0.4$ and 0.5.
			respectively) despite adjuvant

			hormonal therapy prescribed in the majority (59 %) of weakly positive ER cases.
Laible, BMC Cancer, 2016 ⁵⁷	Technical validation of an RT-qPCR in vitro diagnostic test system for the determination of breast cancer molecular subtypes by quantification of ERBB2, ESR1, PGR and MKI67 mRNA levels from formalin fixed paraffin- embedded breast tumor specimens	Tumor RNA was extracted with the novel RNXtract RNA extraction kit. Synthetic RNA was used to assess the sensitivity of the RNXtract kit. DNA and RNA specific qPCR assays were used so as to determine analyte specificity of RNXtract. For the assessment of limit of blank, limit of detection, analytical measurement range and PCR efficiency of the MammaTyper kit serial dilutions of samples were used. Analytical precision studies of MammaTyper were built around two different real time PCR platforms and involved breast tumor samples belonging to different subtypes analyzed across multiple sites and under various stipulated conditions. The MammaTyper assay robustness was tested against RNA input variations, alternative extraction methods and tumor cell content.	Individual assays were linear up to at least 32.33 and 33.56 Cqs (quantification cycles) for the two qPCR platforms tested. PCR efficiency ranged from 99 to 109 %. In qPCR platform 1, estimates for assay specific inter-site standard deviations (SD) were between 0.14 and 0.20 Cqs accompanied by >94 % concordant single marker assignments for all four markers. In platform 2, the inter-site SD estimates were between 0.40 and 0.66 Cqs while the concordance for single marker assignments was >94 % for all four markers. The agreement reached between the two qPCR systems located in one site was 100 % for ERBB2, 96.9 % for ESR1, 97.2 % for PGR and 98.6 % for MKI67. RT-qPCR for individual markers was stable up to a 64-fold dilution for a typical clinical sample. There was no change in assay performance detected at the level of individual markers or subtypes after using different RNA isolation methods. The presence of up to 80 % of surrounding non-tumor tissue including in situ carcinoma did not affect the assay output. Sixteen out of 20 RNXtract eluates yielded more than 50 ng/µl of RNA (average RNA output: 233 ng/µl), whereas DNA contamination per sample was restricted to less than 15 ng/µl. Median recovery rate of RNA extraction was 91.0 %.

Cheang, The Oncologist, 2015 ⁵⁸	Defining Breast Cancer Intrinsic	We merged 1.557 cases from three	Among 283 HER2-negative tumors
	Subtypes by Quantitative Receptor	randomized phase III trials into a	with <1% HR expression by IHC. 207
	Expression	single data set. These breast tumors	(73%) were basal-like: other subtypes.
	F	were centrally reviewed in each trial	particularly HER2-enriched (48, 17%).
		for quantitative FR. PR. and HFR2	were present. Among the 1,298 HFR2-
		expression by immunohistochemistry	negative tumors, borderline HR (1%-
		(IHC) stain and by reverse	9% staining) was uncommon $(n = 39)$
		transcription-quantitative polymerase	and these tumors were
		chain reaction (RT-gPCR) with	heterogeneous: 17 (44%) luminal A/B
		intrinsic subtyping by research-based	12 (31%) HER2-enriched and only 7
		PAM50 BT-qPCB assay	(18%) hasal-like Including them in the
			definition of triple negative breast
			cancer significantly diminished
			enrichment for basal-like cancer (P <
			05) Among 106 HEB2-positive tumors
			with <1% HER expression by IHC, the
			HER2-enriched subtype was the most
			frequent (87, 82%), whereas among
			127 HER2-positive tumors with strong
			HR (>10%) expression, only 69 (54%)
			were HER2-enriched and 55 (43%)
			were luminal (39 luminal B, 16 luminal
			A). Quantitative HR expression by RT-
			qPCR gave similar results. Regardless
			of methodology, basal-like cases
			seldom expressed ER/ESR1 or PR/PGR
			and were associated with the lowest
			expression level of HER2/ERBB2
			relative to other subtypes.
Tramm, Virchows Arch, 2013 ⁵⁹	Reliable PCR quantitation of estrogen,	The aim was to test if mRNA from	Gene expression, based on mRNA
	progesterone and ERBB2 receptor	tissue surrounding breast cancer	extracted from a training set (36
	mRNA from formalin-fixed, paraffin-	affected quantification of estrogen	paraffin blocks) and two validation
	embedded tissue is independent of	receptor α (ESR1), progesterone	sets (133+1,083 blocks), were
	prior macro-dissection	receptor (PGR) and human epidermal	determined by quantitative reverse
		growth factor receptor 2 (ERBB2), by	transcription polymerase chain
		comparing gene expression from	reaction for all samples, as well as by
		whole slide and tumor-enriched	microarray for 133 validation samples.
		sections, and correlating gene	In the training set, agreement
		expression from whole slide sections	between high vs. low mRNA
		with corresponding	expression from whole slide and
		immunohistochemistry.	tumor-enriched sections was absolute
			for ESR1 and ERBB2, and 83 % for

			PGR. Overall agreements, when comparing mRNA expression to immunohistochemistry, were 100 % (ERBB2), 89% (ESR1) and 83% (PGR), which was confirmed in the validation sets. Percentage of tumor in the
Bastien, BMC Medical Genomics, 2012 ⁶⁰	PAM50 Breast Cancer Subtyping by RT-qPCR and Concordance with	We used the PAM50 RT-qPCR assay to expression profile 814 tumors from	sections did not influence the results.ESR1, PGR, and ERBB2 geneexpression had high agreement with
	Standard Clinical Molecular Markers	the GEICAM/9906 phase III clinical trial that enrolled women with locally advanced primary invasive breast cancer. All samples were scored at a single site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu (HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with RT-qPCR continuous gene expression values and "intrinsic" subtype assignment by the PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and proliferation were selected using quartile cut- points from the continuous RT-qPCR data across the PAM50 subtype assignments.	established binary IHC cut-points (area under the curve [AUC] \geq 0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A and B) subtypes (92%), but only 75% of ER negative tumors were classified into the HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers as shown in a multivariate analysis
Kraus, Modern Pathology, 2012 ⁶¹	Semi-quantitative immunohistochemical assay versus oncotype DXs qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study	As part of an ongoing quality assurance program at our institution, we reviewed 464 breast cancer cases evaluated by both immunohistochemistry and oncotype DX assay for estrogen and PR.	We found good correlation for ER status between both assays (98.9% concordance), with immunohistochemistry being slightly more sensitive. Concordance for PR was 94.2% between immunohistochemistry and qRT-PCR with immunohistochemistry again more sensitive than RT-PCR. The results also showed linear correlation between immunohistochemistry H-

			scores and qRT-PCR expression values for ER (correlation coefficient of 0.579), and PR (correlation coefficient of 0.685).
Muller, Diagn Mol Pathol, 2011 ⁶²	Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin- fixed paraffin-embedded tissuea new option for predictive biomarker assessment in breast cancer	We investigated a novel, fully automated, and xylene-free method for RNA isolation and biomarker determination using formalin-fixed paraffin-embedded (FFPE) tissue. The aim was to show that this approach is feasible and gives results that are comparable to the current gold standards. Expression of the breast cancer biomarkers ESR1, PGR, and HER2 was measured in a total of 501 FFPE tissue samples from 167 breast carcinomas, which had been stored for up to 21 years.	Total RNA was extracted from tissue sections and biomarker expression was measured by kinetic RT-PCR (RT- kPCR). The results of the new method were compared with immunohistochemistry as the current gold standard.RNA was successfully isolated from all samples, with a mean yield of 1.4 mug/sample and fragment lengths of at least 150 bp in 99% of samples. RT-kPCR analysis of ESR1, PGR, and HER2 was possible in all samples. Comparing RT-kPCR results with standard IHC, we found a good concordance for ESR1 (agreement: 98.4%), PGR (84.4%), and HER2 (89.8%). We observed a low section-to-section variability of kPCR results for all 3 biomarkers (root of mean squared errors: 0.2 to 0.5 Ct values).
Nielson, Clinical Cancer Research, 2010 ⁶³	A Comparison of PAM50 Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic Factors in Tamoxifen-Treated Estrogen Receptor–Positive Breast Cancer	Quantitative real-time reverse transcription-PCR (qRT-PCR) assays for 50 genes identifying intrinsic breast cancer subtypes were completed on 786 specimens linked to clinical (median follow-up, 11.7 years) and IHC (ER, progesterone receptor [PR], HER2, and Ki67) data. Performance of predefined intrinsic subtype and risk- of-relapse scores was assessed using multivariable Cox models and Kaplan- Meier analysis. Harrell's C-index was used to compare fixed models trained in independent data sets, including proliferation signatures.	Despite clinical ER positivity, 10% of cases were assigned to nonluminal subtypes. qRT-PCR signatures for proliferation genes gave more prognostic information than clinical assays for hormone receptors or Ki67. In Cox models incorporating standard prognostic variables, hazard ratios for breast cancer disease-specific survival over the first 5 years of follow-up, relative to the most common luminal A subtype, are 1.99 (95% confidence interval [CI], 1.09-3.64) for luminal B, 3.65 (95% CI, 1.64-8.16) for HER2- enriched subtype, and 17.71 (95% CI, 1.71-183.33) for the basal-like

			subtype. For node-negative disease,
			PAM50 gRT-PCR–based risk
			assignment weighted for tumor size
			and proliferation identifies a group
			with >95% 10-year survival without
			chemotherapy. In node-positive
			disease, PAM50-based prognostic
			models were also superior.
Badve, JCO, 2008 ⁶⁴	Estrogen- and Progesterone-Receptor	A case-control sample of 776 breast	For ER, the concordance between
	Status in ECOG 2197: Comparison of	cancer patients from Eastern	local and central IHC was 90% (95% Cl,
	Immunohistochemistry by Local and	Cooperative Oncology Group (ECOG)	88% to 92%), between local IHC and
	Central Laboratories and Quantitative	study E2197 was evaluated. Central	central RT-PCR was 91% (95% Cl, 89%
	Reverse Transcription Polymerase	IHC Allred score for ER and PR was	to 93%), and between central IHC and
	Chain Reaction by	obtained using tissue microarrays and	central RT-PCR was 93% (95% Cl, 91%
	Central Laboratory	1D5 ER antibody and 636 PR antibody.	to 95%). For PR, the concordance
		Quantitative RT-PCR for ER and PR in	between local IHC and central IHC was
		whole sections was performed using	84% (95% CI, 82% to 87%), between
		the 21-gene assay.	local IHC and central RT-PCR was 88%
			(95% CI, 85% to 90%), and between
			central IHC and central RT-PCR was
			90% (95% CI, 88% to 92%). Although
			concordance was high, IHC ER-
			negative cases that were RT-PCR
			positive were more common than IHC
			ER-positive cases that were RT-PCR
			negative. In ER-positive patients, ER
			expression by central IHC Allred score
			was marginally associated with
			recurrence (P= .091), and ER
			expression by central RT-PCR was
			significantly associated with
			recurrence (P = .014). However,
			recurrence score, which incorporates
			additional genes/pathways, was a
			highly significant predictor of
			recurrence (P< .0001).

Image Analysis

First Author, Journal, Year	Title	Study Design	Conclusions
Bui, Arch Pathol Lab Med, 2019 ¹	Quantitative Image Analysis of Human	To develop evidence-based	Eleven recommendations were
	Epidermal Growth Factor Receptor 2	recommendations to improve	drafted: 7 based on CAP laboratory

	Immunohistochemistry for Breast	accuracy, precision, and	accreditation requirements and 4
	Cancer: Guideline From the College of	reproducibility in the interpretation of	based on expert consensus opinions. A
	American Pathologists	human epidermal growth factor	3-week open comment period
		receptor 2 (HER2)	received 180 comments from more
		immunohistochemistry (IHC) for	than 150 participants. To improve
		breast cancer where QIA is used. The	accurate, precise, and reproducible
		College of American Pathologists	interpretation of HER2 IHC results for
		(CAP) convened a panel of	breast cancer. OIA and procedures
		pathologists, histotechnologists, and	must be validated before
		computer scientists with expertise in	implementation, followed by regular
		image analysis.	maintenance and ongoing evaluation
		immunohistochemistry, guality	of quality control and quality
		management, and breast pathology to	assurance, HER2 OIA performance.
		develop recommendations for OIA of	interpretation, and reporting should
		HER2 IHC in breast cancer. A	be supervised by pathologists with
		systematic review of the literature	expertise in OIA.
		was conducted to address 5 key	
		questions. Final recommendations	
		were derived from strength of	
		evidence, open comment feedback,	
		expert panel consensus, and advisory	
		panel review.	
Rimm, Mod Pathol, 2019 ⁶⁵	An international multicenter study to	The International Ki67 in Breast	Intraclass correlation coefficient for
	evaluate reproducibility of automated	Cancer Working Group investigated	automated average scores across 16
	scoring for assessment of Ki67 in	whether Ki67 immunohistochemistry	operators was 0.83 (95% credible
	breast cancer	can be analytically validated and	interval: 0.73-0.91) and intraclass
		standardized across laboratories using	correlation coefficient for maximum
		automated machine-based scoring.	scores across 10 operators was 0.63
		Sets of pre-stained core-cut biopsy	(95% credible interval: 0.44-0.80). For
		sections of 30 breast tumors were	the laboratories using scanners from a
		circulated to 14 laboratories for	single vendor (8 score sets), intraclass
		scanning and automated assessment	correlation coefficient for average
		of the average and maximum	automated scores was 0.89 (95%
		percentage of tumor cells positive for	credible interval: 0.81-0.96), which
		Ki67. Seven unique scanners and 10	was similar to the intraclass
		software platforms were involved in	correlation coefficient of 0.87 (95%
		this study. Pre-specified analyses	credible interval: 0.81-0.93) achieved
		included evaluation of reproducibility	using these same slides in a prior
		between all laboratories (primary) as	visual-reading reproducibility study.
		well as among those using scanners	Automated machine assessment of
		from a single vendor (secondary). The	average Ki67 has the potential to
		primary reproducibility metric was	achieve between-laboratory

		intraclass correlation coefficient	reproducibility similar to that for a
		between laboratories, with success	rigorously standardized pathologist-
		considered to be intraclass correlation	hased visual assessment of Ki67
		coefficient >0.80	
Peck I Clin Pathol 201866	Review of diagnostic error in	A literature review of diagnostic	The rate of inaccurate diagnoses
	anatomical nathology and the role and	A literature review of diagnostic	(accossed as a major discordance)
	anatomical pathology and the role and	accuracy in selected specifien	(assessed as a major discordance)
		categories was undertaken and was	different en esimen province with
	prevention	compared with data on metropolitan	different specimen groups, with
		and regional pathologist diagnostic	nignest mean percentage of
		proficiency performance in an	inaccurate diagnoses in gynecology,
		external quality assurance programme	dermatopathology and
		from surveys provided 2015-2017. For	gastrointestinal specimens
		each specimen category, cases having	
		attracted a diagnostic inaccuracy (ie,	
		major discordance) of >/=20% and	
		cases attracting a combined error rate	
		(ie, major and minor discordance) of	
		>/=30% are reviewed and discussed.	
Tosteson, Breast Cancer Res Treat,	Second opinion strategies in breast	Decision analysis examining 12-month	Without a second opinion, 92.2% of
2018 ⁶⁷	pathology: a decision analysis	outcomes of breast biopsy for nine	biopsies received a concordant
	addressing over-treatment, under-	breast pathology interpretation	diagnosis. Concordance rates
	treatment, and care costs.	strategies in the U.S. health system.	increased under all second opinion
		Diagnoses of 115 practicing	strategies, and the rate was highest
		pathologists in the Breast Pathology	(95.1%) and under-treatment lowest
		Study were compared to reference-	(2.6%) when all biopsies had second
		standard-consensus diagnoses with	opinions. However, over-treatment
		and without second opinions.	was lowest when second opinions
		Interpretation strategies were defined	were sought selectively for initial
		by whether a second opinion was	diagnoses of invasive cancer. DCIS. or
		sought universally or selectively (e.g.	atypia (1.8 vs. 4.7% with no 2nd
		2nd opinion if invasive) Main	opinions) This strategy also had the
		outcomes were the expected	lowest projected 12-month care costs
		proportion of concordant breast	(\$5907 billion vs \$6049 billion with)
		bionsy diagnoses the proportion	no 2nd opinions)
		involving over- or under-	
		interpretation and cost of care in U.S.	
		dollars within one-year of hionsy	
Abern J Clin Pathol 2017 ⁶⁸	Continuous measurement of breast	Breast tumour microarrays from the	Both platforms showed considerable
	tumour hormone recentor expression:	Nurses' Health Study were stained for	overlan in continuous measurements
	a comparison of two computational	FR $(n=592)$ and PR $(n=187)$ One	of FR and PR between positive and
	a comparison of two computational	avant nathologist second cases as	nogative groups classified by expert
	pathology platforms	expert pathologist scored cases as	negative groups classified by expert

		positive if >/=1% of tumour nuclei	pathologist. Platform-specific
		exhibited stain. ER and PR were then	measurements were strongly and
		measured with the Definiens Tissue	positively correlated with one another
		Studio (automated) and Aperio Digital	(r>/=0.77). The user-supervised Aperio
		Pathology (user-supervised)	workflow performed slightly better
		platforms. Platform-specific	than the automated Definiens
		measurements were compared using	workflow at classifying ER positivity
		boxplots, scatter plots and correlation	(AUCAperio=0.97; AUCDefiniens=0.90;
		statistics. Classification of ER and PR	difference=0.07, 95% CI 0.05 to 0.09)
		positivity by platform-specific	and PR positivity (AUCAperio=0.94;
		measurements was evaluated with	AUCDefiniens=0.87; difference=0.07,
		areas under receiver operating	95% CI 0.03 to 0.12).
		characteristic curves (AUC) from	,
		univariable logistic regression models.	
		using expert pathologist classification	
		as the standard.	
Maeda, J Clin Pathol, 2017 ⁶⁹	Effectiveness of computer-aided	Two sets of 100 consecutive core	The cut-off values for synaptophysin,
	diagnosis (CADx) of breast pathology	needle biopsy (CNB) specimens were	<10% ER positive, >10% ER positive
	using immunohistochemistry results	collected for test and validation	and CK14/p63 were 0.14%, 2.17%,
	of core needle biopsy samples for	studies. All 200 CNB specimens were	77.93% and 18.66%, respectively. The
	synaptophysin, oestrogen receptor	stained with antibodies targeting	positive predictive value for
	and CK14/p63 for classification of	oestrogen receptor (ER),	malignancy (PPV) was 100% for
	epithelial proliferative lesions of the	synaptophysin and CK14/p63. All	synaptophysin-positive/ER-
	breast	stained slides were scanned in a	high/(CK14/p63)-any or
		whole-slide imaging system and	synaptophysin-positive/ER-
		photographed. The photographs were	low/(CK14/p63)-any. The PPV was
		analyzed using software to identify	25% for synaptophysin-positive/ER-
		the proportions of tumour cells that	intermediate/(CK14/p63)-positive. For
		were positive and negative for each	synaptophysin-negative/(CK14/p63)-
		marker. In the test study, the cut-off	negative, the PPVs for ER-low, ER-
		values for synaptophysin (negative	intermediate and ER-high were 100%.
		and positive) and CK14/p63 (negative	80.0% and 95.8%, respectively. The
		and positive) were decided using	PPV was 4.5% for synaptophysin-
		receiver operating characteristic (ROC)	negative/ER-
		analysis. For ER analysis, samples were	intermediate/(CK14/p63)-positive.
		divided into groups with <10% positive	, (, p, p).
		or >10% positive cells and decided	
		using receiver operating characteristic	
		(ROC) analysis. Finally, these two	
		groups categorized as ER-low, ER-	
		intermediate (non-low and non-high)	
		and ER-high groups. In the validation	

		study the second set of	
		immunohistochemical slides were	
		analyzed using these cut-off values	
Barnes Laboratory Investigation	Whole tumor section quantitative	In this study, we implemented a novel	Between-reader results for each
2017 ⁷⁰	image analysis maximizes between-	solely morphology-based whole tumor	biomarker in relation to conventional
2017	nathologists' reproducibility for	section annotation strategy to	scoring modalities showed similar
	clinical immunohistochemistry-based	maximize image analysis quantitation	concordance as manual read: FR field-
	hiomarkers	results between readers. We first	of view image analysis: 95.3% (95% Cl
	biomarkers	compare the field of view image	01^{-1} (95%) 01^{-1} (95%) 01^{-1} (95%) 01^{-1}
		analysis annotation approach to	(97.8, 05.2%) vs uigital read: $92.0%$
		digital and manual based modelities	(01.4, 07.8%) vs inalitual read. 94.9%
		agrees multiple clipical studies (2120	(91.4–97.8%); PR field-OI-View finage
		across multiple clinical studies (120	analysis. 94.1% (90.3–97.2%) vs uigitai
		cases per study) and biomarkers (ER,	read: 94.0% (90.2–97.1%) vs manual
		PR, HER2, KI-67, and p53 IHC) and	read: 94.4% (90.9–97.2%); KI-67 field-
		then compare a subset of the same	of-view image analysis: 86.8% (82.1–
		cases (~40 cases each from the ER, PR,	91.4%) vs digital read: 76.6% (70.9–
		HER2, and KI-67 studies) using whole	82.2%) vs manual read: 85.6% (80.4–
		tumor section annotation approach to	90.4%); p53 field-of-view image
		understand incremental value of all	analysis: 81.7% (76.4–86.8%) vs digital
		modalities.	read: 80.6% (75.0–86.0%) vs manual
			read: 78.8% (72.2–83.3%); and HER2
			field-of-view image analysis: 93.8%
			(90.0–97.2%) vs digital read: 91.0
			(86.6–94.9%) vs manual read: 87.2%
			(82.1–91.9%). Subset implementation
			and analysis on the same cases using
			whole tumor section image analysis
			approach showed significant
			improvement between pathologists
			over field-of-view image analysis and
			manual read (HER2 100% [97–100%]),
			P= 0.013 field-of-view image analysis
			and 0.013 manual read; Ki-67 100%
			(96.9–100%), P= 0.040 and 0.012;
			ER 98.3% (94.1–99.5%), p = 0.232 and
			0.181; and PR 96.6% (91.5–98.7%), p =
			0.012 and 0.257).
Liu, Tumor Biol., 2016 ⁷¹	Application of multispectral imaging in	We analyzed and compared the utility	The MS images acquired of IHC-
	quantitative immunohistochemistry	of multispectral (MS) versus	stained membranous marker human
	study of breast cancer: a comparative	conventional red–green–blue (RGB)	epidermal growth factor receptor 2
	study	images for immunohistochemistry	(HER2), cytoplasmic marker

		(IHC) staining to explore the	cytokeratin5/6 (CK5/6), and nuclear
		advantages of MSI in clinical-	marker estrogen receptor (ER) have
		pathological diagnosis.	higher resolution, stronger contrast.
			and more accurate segmentation than
			the RGB images. The total signal
			optical density (OD) values for each
			biomarker were higher in MS images
			than in RGB images (all P<0.05).
			Moreover, receiver operator
			characteristic (ROC) analysis revealed
			that a greater area under the curve
			(AUC) higher sensitivity and
			specificity in evaluation of HER2 gene
			were achieved by MS images
			(AUC=0.91, 89.1 %, 83.2 %) than RGB
			images (AUC=0.87, 84.5, and 81.8%).
			There was no significant difference
			between quantitative results of RGB
			images and clinico-pathological
			characteristics (P>0.05). However.
			quantifying MS images, the total signal
			OD values of HER2 positive expression
			were correlated with lymph node
			status and histological grades (P=0.02
			and 0.04). Additionally, the
			consistency test results indicated the
			inter-observer agreement was more
			robust in MS images for HER2 (inter-
			class correlation coefficient
			[ICC])=0.95, rs=0.94), CK5/6 (ICC=0.90,
			rs=0.88), and ER (ICC= 0.94, rs=0.94)
			(all P<0.001) than that in RGB images
			for HER2 (ICC=0.91, rs=0.89), CK5/6
			(ICC=0.85, rs=0.84), and ER (ICC=0.90,
			rs=0.89) (all P<0.001).
Stålhammar, Modern Pathology,	Digital image analysis outperforms	In this study, 3 cohorts of primary	The DIA system used was the
2016 ⁷²	manual biomarker assessment in	breast cancer specimens (total n=436)	Visiopharm Integrator System. DIA
	breast cancer	with up to 28 years of survival data	outperformed manual scoring in terms
		were scored for Ki67, ER, PR, and	of sensitivity and specificity for the
		HER2 status manually and by digital	Luminal B subtype, widely considered
		image analysis (DIA). The results were	the most challenging distinction in
		then compared for sensitivity and	surrogate subclassification, and

		specificity for the Luminal B subtype, concordance to PAM50 assays in subtype classification and prognostic power.	produced slightly better concordance and Cohen's κ agreement with PAM50 gene expression assays. Manual biomarker scores and DIA essentially matched each other for Cox regression hazard ratios for all-cause mortality. When the Nottingham combined histologic grade (Elston– Ellis) was used as a prognostic surrogate, stronger Spearman's rank- order correlations were produced by DIA. Prognostic value of Ki67 scores in terms of likelihood ratio χ^2 (LR χ^2) was higher for DIA that also added significantly more prognostic information to the manual scores (LR– $\Delta\chi^2$).
Elmore, BMJ, 2016 ⁷³	Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study	Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists' clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non- proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement	Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for cases with initial interpretations of atypia, DCIS, or invasive cancer decreased the over- interpretation of benign cases without atypia from 12.9% to 6.0%. Atypia cases had the highest misclassification rate after single interpretation (52.2%), remaining at more than 34% in all second opinion scenarios.

		statistics depended on the	
		composition of the test set, which	
		included a higher prevalence of	
		difficult cases than in typical practice.	
Khazai, J Surg Oncol, 2015 ⁷⁴	Breast pathology second review	We retrospectively studied all 1,970	A significant discrepancy, defined as a
	identifies clinically significant	breast pathology referral cases	disagreement that affected patient
	discrepancies in over 10% of patients	reviewed during one calendar year.	care, was found in 226 cases (11.47%).
		The variables studied were histologic	Additionally, in 418 resection cases
		classification; tumor grade, necrosis,	(31.6%), some CAP-checklist specific
		size, margin status, lymphatic/vascular	required information was missing. The
		invasion, dermal involvement, and	most common areas of significant
		biomarker profile (ER, PR, and Her-2).	discrepancy were histologic category
		Each variable was rated as "agree,"	(66 cases; 33%) and biomarker
		"disagree," "missing information," or	reporting (50 cases; 25%). The most
		"not applicable."	problematic diagnostic categories
			were intraductal lesions, lobular
			carcinoma, metaplastic carcinomas,
			and phyllodes tumors. Most
			disagreements in the biomarker-
			profile category were interpretive, but
			in 20% of discrepant cases, findings
			were supported by repeat
			immunohistochemical analysis.
Engelberg, Hum Pathol, 2015 ⁷⁵	"Score the Core" Web-based	We developed a Web-based training	Pathologists in the Athena Breast
	pathologist training tool improves the	tool, called "Score the Core" (STC)	Health Network and pathology
	accuracy of breast cancer IHC4 scoring	using tissue microarrays to train	residents at associated institutions
		pathologists to visually score estrogen	completed the exercise. By using STC,
		receptor (using the 300-point H	pathologists improved their estrogen
		score), progesterone receptor	receptor H score and progesterone
		(percent positive), and Ki-67 (percent	receptor and Ki-67 proportion
		positive). STC used a reference score	assessment and demonstrated a good
		calculated from a reproducible manual	correlation between pathologist and
		counting method.	reference scores. In addition, we
			collected information about
			pathologist performance that allowed
			us to compare individual pathologists
			and measures of agreement.
			Pathologists' assessment of the
			proportion of positive cells was closer
			to the reference than their

			according to the valative intensity of
			assessment of the relative intensity of
Gertych, Diagnostic Pathology, 2014 ⁷⁶	Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis	Tissues were prospectively decalcified for up to 24 hours and stained by immunohistochemistry (IHC) for ER, PR, Ki-67 and p53. HER2 positive breast cancer sections were retrieved from the pathology archives, and annotated with the categorical HER2 expression scores from the pathology reports. Digital images were captured with Leica and Aperio slide scanners. The conversion of the digital to categorical scores was accomplished with a Gaussian mixture model and tested for accuracy by comparison to clinical scores.	positive cells.We observe significant effects of the decalcification treatment on common breast cancer biomarkers that are used in the clinic. ER, PR and p53 staining intensities decreased 15 – 20%, whereas Ki-67 decreased > 90% during the first 6 hrs of treatment and stabilized thereafter. In comparison with the Aperio images, pixel intensities generated by the Leica system are lower. A novel statistical model for conversion of digital to categorical scores provides a systematic approach for conversion of nuclear and membrane stains and demonstrated a high concordance with clinical scores
Ali, British Journal of Cancer, 2013 ⁷⁷	Astronomical algorithms for automated analysis of tissue protein expression in breast cancer	We report image analysis algorithms adapted from astronomy for the precise automated analysis of IHC in all subcellular compartments. The power of this technique is demonstrated using over 2000 breast tumours and comparing quantitative automated scores against manual assessment by pathologists.	All continuous automated scores showed good correlation with their corresponding ordinal manual scores. For oestrogen receptor (ER), the correlation was 0.82, P<0.0001, for BCL2 0.72, P<0.0001 and for HER2 0.62, P<0.0001. Automated scores showed excellent concordance with manual scores for the unsupervised assignment of cases to 'positive' or 'negative' categories with agreement rates of up to 96%
Jorns, Arch Pathol Lab Med, 2013 ⁷⁸	Review of estrogen receptor, progesterone receptor, and HER- 2/neu immunohistochemistry impacts on treatment for a small subset of breast cancer patients transferring care to another institution	To determine the frequency of interinstitutional discordance for the interpretation of ER/PR and HER- 2/neu immunohistochemical slides and assess the resulting clinical significance. DESIGN: One thousand one hundred thirty-nine ER, 1111 PR, and 663 HER-2/neu immunohistochemistry stains from 1139 cases were reviewed at	Interinstitutional concordance for individual stains was excellent (ER: kappa = 0.93; PR: kappa = 0.90; HER- 2/neu: kappa = 0.93). One hundred four (9.1%) had interinstitutional discordance in 1 or more stains; however, the majority of the discordance was clinically insignificant. Seven patients (0.6%) had a clinically significant change in treatment

		contributing and referral centers and	recommendation based on review and
		compared for concordance and clinical	2 (0.2%) had interpretation changes
		impact of discordance.	that would likely have resulted in
			treatment change had they not
			already completed therapy. Two
			patients (0.2%) had change in
			treatment despite concordant
			interpretations.
Nassar, Anatomic Pathology, 2011 ⁷⁹	A Multisite Performance Study	A total of 520 formalin-fixed breast	Comparable percentages of
	Comparing the Reading of	tissue specimens were assaved at 3	agreements were obtained for manual
	Immunohistochemical Slides on a	clinical sites for FB and PB (260 each)	microscopy (MM) and manual digital
	Computer Monitor With Conventional	Percentage and average staining	slide reading (MDR) (FR percentage of
	Manual Microscopy for Estrogon and	intensity of positive pucki were	positivo pueloi with sutoffe: MM
	Progesterene Recenter Analysis	accossed At each site 2 pathologists	
	Progesterone Receptor Analysis	assessed. At each site, 5 pathologists	91.3%-99.0%/WDR, 91.3%100.0%, PR,
		performed a binded reading of the	percentage of positive nuclei with
		glass slides using their microscopes	CULOTIS: IVINI, 83.8%-99.0%/IVIDR,
		initially and later using digital images	76.3%-100.0%).
		on a computer monitor.	
Slodkowska, Folia Histochem	Study on breast carcinoma Her2/neu	The aims of our study were: to	The results of our investigations
Cytobiol., 2010 ⁸⁰	and hormonal receptors status	evaluate the scoring reproducibility of	showed very high reproducibility of
	assessed by automated images	Her-2 /neu ihc expression tested by	Her-2/neu scores in intra- and
	analysis systems: ACIS III (Dako) and	two automated systems: ACIS (Dako)	interobserver analysis by ACIS
	ScanScope (Aperio)	and ScanScope (Aperio); to estimate	evaluation. The major concordance
		the ER/PR expression in ihc staining	was present in strong 3+ ihc cases;
		methods with different anti-ER/anti-	very small discordance was shown by
		PR antibodies (the monoclonal and	cases with low expression of Her-
		the ER/PR pharmDx TM Kit) by the	2/neu. The accuracy of scoring by the
		ACIS system. Her-2/neu ihc expression	Aperio was little lower in comparison
		was measured in 114 primary invasive	to ACIS but it might result from the
		breast carcinomas by the manual and	smaller and variable series of samples
		the automated scoring (ACIS and	analysed by Aperio. The concordance
		Aperio system). 106 slides stained ihc	in scoring of two automated systems
		with two types of anti-ER/anti-PR	was 86.5% (p<0.0001; y=0.887); the
		antibodies entered the quantisation.	discordance was referred only to the
			lower expression of Her-2/neu. The
			concordance in manual scoring
			performed by the single observer and
			the panel was 84.2% ($p<0.0001$. $v =$
			0.99); the discordance comprised a
			few cases with strong expression (2+
			vs 3+). Very high intra- and

			interobserver reproducibility of the ER/PR ihc measurements was present in the readers results (referred to the percentage of immunoreactive carcinomatous cell population in the breast carcinomas acc. to the ACIS algorithm). No differences were disclosed in the percentage of ER- immunoreactive and PR- immunoreactive carcinomatous cell populations when used 2 different type of antibodies, in the ACIS automated method.
Tuominen, Breast Cancer Research, 2010 ⁸¹	ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67	The application, named ImmunoRatio, calculates the percentage of positively stained nuclear area (labeling index) by using a color deconvolution algorithm for separating the staining components (diaminobenzidine and hematoxylin) and adaptive thresholding for nuclear area segmentation. ImmunoRatio was calibrated using cell counts defined visually as the gold standard (training set, n = 50). Validation was done using a separate set of 50 ER, PR, and Ki-67 stained slides (test set, n = 50). In addition, Ki-67 labeling indexes determined by ImmunoRatio were studied for their prognostic value in a retrospective cohort of 123 breast cancer patients.	The labeling indexes by calibrated ImmunoRatio analyses correlated well with those defined visually in the test set (correlation coefficient r = 0.98). Using the median Ki-67 labeling index (20%) as a cutoff, a hazard ratio of 2.2 was obtained in the survival analysis (n = 123, P = 0.01). ImmunoRatio was shown to adapt to various staining protocols, microscope setups, digital camera models, and image acquisition settings. The application can be used directly with web browsers running on modern operating systems (e.g., Microsoft Windows, Linux distributions, and Mac OS). No software downloads or installations are required. ImmunoRatio is open source software, and the web application is publicly accessible on our website.
Lloyd, J Pathol Inform, 2010 ⁸²	Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it?	Whole slide images of 33 invasive ductal carcinoma (IDC) (10 ER and 23 HER2) were scored by pathologist under the light microscope and confirmed by another pathologist. The HER2 results were additionally confirmed by fluorescence in situ	For HER2 positive group, each algorithm scored 23/23 cases within the range established by the pathologist. For ER, both algorithms scored 10/10 cases within range. The performance of each algorithm varies somewhat from the percentage of

		hybridization (FISH). The scoring	staining as compared to the
		criteria were adherent to the	pathologist's reading.
		guidelines recommended by the	
		American Society of Clinical	
		Oncology/College of American	
		Pathologists Whole slide stains were	
		then scored by commercially available	
		image analysis algorithms from	
		Definiens (Munich, Germany) and	
		Aperio Technologies (Vista, CA, LISA)	
		Fach algorithm was modified	
		specifically for each marker and tissue	
		The results were compared with the	
		semi-quantitative manual scoring	
		which was considered the gold	
		standard in this study	
Aitken Annals of Oncology 2009 ⁸³	Quantitative analysis of changes in FR	A total of 385 natients with invasive	Quantitative recentor expression
Alteri, Annus of Oncology, 2005	PR and HER2 expression in primary	nrimary breast carcinomas and naired	shows a wide dynamic range
	breast cancer and naired nodal	lymph nodes $(n = 211)$ were assessed	compared with IHC Overall 46.9%
	metastases	for FR_PR and HFR2 expression using	cases had disparate breast/node
		quantitative immunofluorescence	recentor status of at least one
		Cut-points were defined by	receptor status of at least one
		comparison with tumours scored by	expression between primary tumour
		immunohistochomistry (IHC) and EISH	and node are large magnitude (greater
		Differences in expression for each of	than fivefold) changes. Triple pegative
		the markers and melocular phonotype	nhanatuna changes in 22.1% of eace
		were analysed	phenotype changes in 23.1% of cases.
		were analysed.	

n	C	IC
υ	U	IS .

First Author, Journal, Year	Title	Study Design	Conclusions
Chaudhary, WMJ, 2018 ⁸⁴	Does Progesterone Receptor Matter in	Six hundred ninety-three patients	Median follow-up was 5.2 years. The
	the Risk of Recurrence for Patients	diagnosed and treated for DCIS at	5-year recurrence-free survival (RFS)
	With Ductal Carcinoma in Situ?	Froedtert and Medical College of	was 91% (95% Cl, 88.2-93.3) while
		Wisconsin Cancer Center (February	estimated 7-year RFS was 86% (95%
		2002 to March 2015) were studied to	CI, 81.9-89.2). Seventy-five patients
		determine if the recurrence rates	had a recurrence during their follow-
		were significantly different between	up. Patients with ER-/PR- tumors (n =
		ER+/PR- and ER+/PR+ tumors.	118) had a significantly higher risk of
		Recurrence was defined as either	recurrence (Hazard Ratio 3.7, 95% CI,
		noninvasive or invasive ipsilateral,	1.9-7.2, P = 0.0001) whereas those
		contralateral, or distant disease.	with ER+/PR- subtype (n = 77) did not

		Probabilities of recurrences were calculated using Kaplan-Meier estimator. Cox proportional hazards model was used to evaluate the effect of prognostic factors on DCIS recurrence.	have a significant difference in recurrence risk (HR 1.75, 95% CI, 0.92- 3.32, P = 0.085) when compared to ER+/PR+ tumors (n = 482). No endocrine therapy for ER+ DCIS and lumpectomy alone were also significant predictors of recurrence (P = 0.0073 and P = 0.005, respectively).
Hwang, Breast Cancer Research and Treatment, 2018 ⁸⁵	Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database	Data of 14,944 patients with DCIS were analyzed. Molecular subtypes were classified into four categories based on expression of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Kaplan– Meier estimator was used for overall survival analysis while Cox proportional hazards model was used for univariate and multivariate analyses.	Luminal A subtype (ER/PR+, HER2–) showed higher (P = .009) survival rate than triple-negative (TN) subtype. Tamoxifen therapy group showed superior (P < .001) survival than no- tamoxifen therapy group. It had survival benefit only for luminal A subtype (P = .001). Tamoxifen therapy resulted in higher survival rate in subgroups with positive ER (P = .006), positive PR (P = .009), and negative HER2 (P < .001). In luminal A subtype, tamoxifen therapy showed lower hazard ratio (HR) compared to no- tamoxifen therapy (HR, 0.420; 95% CI 0.250–0.705; P = .001). Tamoxifen therapy was a significant independent factor by multivariate analysis (HR, 0.538; 95% CI 0.306–0.946; P = .031) as well as univariate analysis.
Ravaioli, International Journal of Experimental Pathology, 2017 ⁸⁶	Androgen and oestrogen receptors as potential prognostic markers for patients with ductal carcinoma in situ treated with surgery and radiotherapy	A series of 42 DCIS patients treated with quadrantectomy and radiotherapy were followed for a period of up to 95 months. Of these, 11 had recurrent DCIS or progressed to invasive cancer. All tumors were analyzed for clinical pathological features. Conventional biomarkers and androgen receptor expression were determined by immunohistochemistry.	Results showed that AR was higher in tumors of relapsed patients than non- relapsed patients (P value: 0.0005). Conversely, estrogen receptor (ER) was higher, albeit not significantly, in non-relapsed patients than in relapsed patients. AR/ER ratio was considerably different in the two subgroups (P value: 0.0033). Area under the curve (AUC) values were 0.85 for AR and 0.80 for the AR/ER ratio.
Allred, JCO, 2012 ⁸⁷	Adjuvant Tamoxifen Reduces Subsequent Breast Cancer in Women	Estrogen (ER) and progesterone receptors (PgR) were evaluated in 732	ER was positive in 76% of patients. Patients with ER-positive DCIS treated

	With Estrogen Receptor–Positive	patients with DCIS (41% of original	with tamoxifen (v placebo) showed
	Ductal Carcinoma in Situ: A Study	study population). An experienced	significant decreases in subsequent
	Based on NSABP Protocol B-24	central laboratory determined	breast cancer at 10 years (hazard ratio
		receptor status in all patient cases	[HR], 0.49; P < .001) and overall
		with available paraffin blocks ($n = 449$)	follow-up (HR. 0.60: P = .003), which
		by immunohistochemistry (IHC) using	remained significant in multivariable
		comprehensively validated assays.	analysis (overall HR. 0.64: P= .003).
		Results for additional patients (n =	Results were similar, but less
		283) determined by various methods	significant, when subsequent
		(primarily IHC) were available from	ipsilateral and contralateral, invasive
		enrolling institutions. Combined	and noninvasive, breast cancers were
		results were evaluated for benefit of	considered separately. No significant
		tamoxifen by receptor status at 10	benefit was observed in FR-negative
		vears and overall follow-up (median	DCIS PgR and either recentor were
		14.5 years).	positive in 66% and 79% of patients.
			respectively and in general neither
			was more predictive than FR alone
Cuzick Lancet Oncol 2011 ⁸⁸	Effect of tamoxifen and radiotherapy	Women with completely locally	Between May 1990 and August
	in women with locally excised ductal	excised DCIS were recruited into a	1998 1701 women were randomly
	carcinoma in situ: long-term results	randomized 2x2 factorial trial of	assigned to radiotherapy and
	from the LIK/ANZ DCIS trial	radiotherapy tamovifen or both	tamovifen radiotherany alone
		Randomization was independently	tamovifen alone, or to no adjuvant
		done for each of the two treatments	treatment Seven natients had
		(radiothorapy and tamovifon)	protocol violations and thus 1694
		stratified by screening assessment	patients were available for analysis
		contor, and blocked in groups of four	After a modian follow up of 12.7 years
		The recommended does for rediction	(10P 10 0 14 7) 276 (162 invasivo [122])
		was EQ Gy in 25 fractions over E weeks	(IQN 10.9-14.7), 570 (105 IIIVasive [122
		(2 Cu per deu en weekdeus) and	DCIC [174 incidence] vs 17
		(2 Gy per day on weekdays), and	DCIS [174 Ipsilateral vs 17
		tamoxifen was prescribed at a dose of	contralaterall, and 16 of unknown
		20 mg daily for 5 years. Elective	invasiveness of laterality) breast
		decision to withhold or provide one of	cancers were diagnosed. Radiotherapy
		the treatments was permitted. The	reduced the incidence of all new
		endpoints of primary interest were	breast events (hazard ratio [HR] 0.41,
		invasive ipsilateral new breast events	95% CI 0.30-0.56; p<0.0001), reducing
		for the radiotherapy comparison and	the incidence of ipsilateral invasive
		any new breast event, including	aisease (0.32, 0.19-0.56; p<0.0001) as
		contralateral disease and DCIS, for	well as ipsilateral DCIS (0.38, 0.22-
		tamoxiten. Analysis of each of the two	0.63; p<0.0001), but having no effect
		treatment comparisons was restricted	on contralateral breast cancer (0.84,
		to patients who were randomly	0.45-1.58; p=0.6). Tamoxifen reduced
		assigned to that treatment. Analyses	the incidence of all new breast events

		were by intention to treat. All trial drugs have been completed and this study is in long-term follow-up. This study is registered, number ISRCTN99513870.	(HR 0.71, 95% CI 0.58-0.88; p=0.002), reducing recurrent ipsilateral DCIS (0.70, 0.51-0.86; p=0.03) and contralateral tumors (0.44, 0.25-0.77; p=0.005), but having no effect on ipsilateral invasive disease (0.95, 0.66- 1.38; p=0.8). No data on adverse events except cause of death were
Lin, Biotech Histochem, 2010 ⁸⁹	Tissue microarray-based immunohistochemical study can significantly underestimate the expression of HER2 and progesterone receptor in ductal carcinoma in situ of the breast	Our study was designed to investigate the concordance of expression in TMA and whole sections of estrogen receptor (ER), progesterone receptor (PR) and HER2 using IHC analysis for ductal carcinoma in situ (DCIS) of the breast. Seventy-five consecutive cases of DCIS were retrieved, reviewed and used to construct the TMA. IHC analysis of the expression of ER, PR, and HER2 were performed on TMA and whole sections of the corresponding cases, and the results were compared.	Collected for this trial. The specificity and sensitivity for TMA- based assays were 87.0, 75.9, 90.6 and 90.4%, and 76.1, 27.3 for ER, PR and HER2, respectively. The concordance and discordance were 89.3, 76.0 and 72.0%, and 6.7, 13.3 and 16.0% for ER, PR, HER2, respectively. The kappa values were 0.83, 0.89 and 0.42 for ER, PR and HER2, respectively. The non- concordance rates were inversely related to core number, with 46.67, 22.67 and 11.56% for one core, two cores, and three cores, respectively, per marker per case (p 0.001), but not associated with tumor size.

References

1. Bui MM, Riben MW, Allison KH, et al: Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists. Arch Pathol Lab Med, 2019;143(10):1180-1195.

2. Regan MM, Francis PA, Pagani O, et al: Absolute Benefit of Adjuvant Endocrine Therapies for Premenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Early Breast Cancer: TEXT and SOFT Trials. J Clin Oncol 34:2221-31, 2016

3. Spring LM, Gupta A, Reynolds KL, et al: Neoadjuvant Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer: A Systematic Review and Meta-analysis. JAMA Oncol 2:1477-1486, 2016

4. Honma N, Horii R, Iwase T, et al: Proportion of estrogen or progesterone receptor expressing cells in breast cancers and response to endocrine therapy. Breast 23:754-62, 2014

5. Early Breast Cancer Trialists' Collaborative Group, Davies C, Godwin J, et al: Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771-84, 2011

6. Khoshnoud MR, Lofdahl B, Fohlin H, et al: Immunohistochemistry compared to cytosol assays for determination of estrogen receptor and prediction of the long-term effect of adjuvant tamoxifen. Breast Cancer Res Treat 126:421-30, 2011

7. Kim C, Tang G, Pogue-Geile KL, et al: Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J Clin Oncol 29:4160-7, 2011

 Ejlertsen B, Aldridge J, Nielsen KV, et al: Prognostic and predictive role of ESR1 status for postmenopausal patients with endocrine-responsive early breast cancer in the Danish cohort of the BIG 1-98 trial. Ann Oncol 23:1138-44, 2011
 Dowsett M, Allred C, Knox J, et al: Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol 26:1059-65, 2008

10. Bhargava R, Clark BZ, Dabbs DJ: Breast Cancers With Magee Equation Score of Less Than 18, or 18-25 and Mitosis Score of 1, Do Not Require Oncotype DX Testing: A Value Study. Am J Clin Pathol 151:316-323, 2019

11. Weiss A, Chavez-MacGregor M, Lichtensztajn DY, et al: Validation Study of the American Joint Committee on Cancer Eighth Edition Prognostic Stage Compared With the Anatomic Stage in Breast Cancer. JAMA Oncol 4:203-209, 2018 12. Lee SB, Kim J, Sohn G, et al: A Nomogram for Predicting the Oncotype DX Recurrence Score in Women with T1-3N0-1miM0 Hormone ReceptorPositive, Human Epidermal Growth Factor 2 (HER2) Negative Breast Cancer. Cancer Res Treat, 2019;51(3):1073-1085.

13. Farrugia DJ, Landmann A, Zhu L, et al: Magee Equation 3 predicts pathologic response to neoadjuvant systemic chemotherapy in estrogen receptor positive, HER2 negative/equivocal breast tumors. Mod Pathol 30:1078-1085, 2017 14. Sheri A, Smith IE, Hills M, et al: Relationship between IHC4 score and response to neo-adjuvant chemotherapy in estrogen receptor-positive breast cancer. Breast Cancer Res Treat 164:395-400, 2017

15. Kim HS, Umbricht CB, Illei PB, et al: Optimizing the Use of Gene Expression Profiling in Early-Stage Breast Cancer. J Clin Oncol 34:4390-4397, 2016

16. Tan W, Luo W, Jia W, et al: A combination of Nottingham prognostic index and IHC4 score predicts pathological complete response of neoadjuvant chemotherapy in estrogen receptor positive breast cancer. Oncotarget 7:87312-87322, 2016.

17. Lakhanpal R, Sestak I, Shadbolt B, et al: IHC4 score plus clinical treatment score predicts locoregional recurrence in early breast cancer. Breast 29:147-52, 2016

18. Yeo B, Zabaglo L, Hills M, et al: Clinical utility of the IHC4+C score in oestrogen receptor-positive early breast cancer: a prospective decision impact study. Br J Cancer 113:390-5, 2015

19. Turner BM, Skinner KA, Tang P, et al: Use of modified Magee equations and histologic criteria to predict the Oncotype DX recurrence score. Mod Pathol 28:921-31, 2015

20. Klein ME, Dabbs DJ, Shuai Y, et al: Prediction of the Oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis. Mod Pathol 26:658-64, 2013

21. Allison KH, Kandalaft PL, Sitlani CM, et al: Routine pathologic parameters can predict Oncotype DX recurrence scores in subsets of ER positive patients: who does not always need testing? Breast Cancer Res Treat 131:413-24, 2012

22. Cuzick J, Dowsett M, Pineda S, et al: Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29:4273-8, 2011

 Landmann A, Farrugia DJ, Zhu L, et al: Low Estrogen Receptor (ER)-Positive Breast Cancer and Neoadjuvant Systemic Chemotherapy: Is Response Similar to Typical ER-Positive or ER-Negative Disease? Am J Clin Pathol 150:34-42, 2018
 Chen T, Zhang N, Moran MS, et al: Borderline ER-Positive Primary Breast Cancer Gains No Significant Survival Benefit

From Endocrine Therapy: A Systematic Review and Meta-Analysis. Clin Breast Cancer 18:1-8, 2018

25. Zhang Z, Wang J, Skinner KA, et al: Pathological features and clinical outcomes of breast cancer according to levels of oestrogen receptor expression. Histopathology 65:508-16, 2014

26. Gloyeske NC, Dabbs DJ, Bhargava R: Low ER+ breast cancer: Is this a distinct group? Am J Clin Pathol 141:697-701, 2014

27. Balduzzi A, Bagnardi V, Rotmensz N, et al: Survival outcomes in breast cancer patients with low

estrogen/progesterone receptor expression. Clin Breast Cancer 14:258-64, 2014

28. Yi M, Huo L, Koenig KB, et al: Which threshold for ER positivity? a retrospective study based on 9639 patients. Ann Oncol 25:1004-11, 2014

29. Deyarmin B, Kane JL, Valente AL, et al: Effect of ASCO/CAP guidelines for determining ER status on molecular subtype. Ann Surg Oncol 20:87-93, 2012

30. Reisenbichler ES, Lester SC, Richardson AL, et al: Interobserver concordance in implementing the 2010 ASCO/CAP recommendations for reporting ER in breast carcinomas: a demonstration of the difficulties of consistently reporting low levels of ER expression by manual quantification. Am J Clin Pathol 140:487-94, 2013

31. Iwamoto T, Booser D, Valero V, et al: Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol 30:729-34, 2012

Raghav KP, Hernandez-Aya LF, Lei X, et al: Impact of low estrogen/progesterone receptor expression on survival outcomes in breast cancers previously classified as triple negative breast cancers. Cancer 118:1498-506, 2012
 Kuroda H, Muroi N, Hayashi M, et al: Oestrogen receptor-negative/progesterone receptor-positive phenotype of invasive breast carcinoma in Japan: re-evaluated using immunohistochemical staining. Breast Cancer 26:249-254, 2019
 Foley NM, Coll JM, Lowery AJ, et al: Re-Appraisal of Estrogen Receptor Negative/Progesterone Receptor Positive (ER-/PR+) Breast Cancer Phenotype: True Subtype or Technical Artefact? Pathol Oncol Res 24:881-884, 2018
 Ahmed SS, Thike AA, Zhang K, et al: Clinicopathological characteristics of oestrogen receptor negative, progesterone receptor positive breast cancers: re-evaluating subsets within this group. J Clin Pathol 70:320-326, 2017

36. Bae SY, Kim S, Lee JH, et al: Poor prognosis of single hormone receptor- positive breast cancer: similar outcome as triple-negative breast cancer. BMC Cancer 15:138, 2015

37. Knoop AS, Laenkholm AV, Jensen MB, et al: Estrogen receptor, Progesterone receptor, HER2 status and Ki67 index and responsiveness to adjuvant tamoxifen in postmenopausal high-risk breast cancer patients enrolled in the DBCG 77C trial. Eur J Cancer 50:1412-21, 2014

38. Cserni G, Francz M, Kalman E, et al: Estrogen receptor negative and progesterone receptor positive breast carcinomas-how frequent are they? Pathol Oncol Res 17:663-8, 2011

39. Albert JM, Gonzalez-Angulo AM, Guray M, et al: Patients with only 1 positive hormone receptor have increased locoregional recurrence compared with patients with estrogen receptor-positive progesterone receptor-positive disease in very early stage breast cancer. Cancer 117:1595-601, 2011

40. Ahn SG, Yoon CI, Lee JH, et al: Low PR in ER(+)/HER2(-) breast cancer: high rates of TP53 mutation and high SUV. Endocr Relat Cancer, 2018. Nov 1 epub ahead of print.

41. Viale G, de Snoo FA, Slaets L, et al: Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial. Breast Cancer Res Treat 167:123-131, 2018

42. Zarrella ER, Coulter M, Welsh AW, et al: Automated measurement of estrogen receptor in breast cancer: a comparison of fluorescent and chromogenic methods of measurement. Lab Invest 96:1016-25, 2016

43. Viale G, Slaets L, de Snoo FA, et al: Discordant assessment of tumor biomarkers by histopathological and molecular assays in the EORTC randomized controlled 10041/BIG 03-04 MINDACT trial breast cancer : Intratumoral heterogeneity and DCIS or normal tissue components are unlikely to be the cause of discordance. Breast Cancer Res Treat 155:463-9, 2016

44. Wesseling J, Tinterri C, Sapino A, et al: An international study comparing conventional versus mRNA level testing (TargetPrint) for ER, PR, and HER2 status of breast cancer. Virchows Arch 469:297-304, 2016

45. Dekker TJ, ter Borg S, Hooijer GK, et al: Quality assessment of estrogen receptor and progesterone receptor testing in breast cancer using a tissue microarray-based approach. Breast Cancer Res Treat 152:247-52, 2015

46. Viale G, Slaets L, Bogaerts J, et al: High concordance of protein (by IHC), gene (by FISH; HER2 only), and microarray readout (by TargetPrint) of ER, PgR, and HER2: results from the EORTC 10041/BIG 03-04 MINDACT trial. Ann Oncol 25:816-23, 2014

47. Karn T, Metzler D, Ruckhaberle E, et al: Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Res Treat 120:567-79, 2010

48. Bordeaux JM, Cheng H, Welsh AW, et al: Quantitative in situ measurement of estrogen receptor mRNA predicts response to tamoxifen. PLoS One 7:e36559, 2012

49. Welsh AW, Moeder CB, Kumar S, et al: Standardization of estrogen receptor measurement in breast cancer suggests false-negative results are a function of threshold intensity rather than percentage of positive cells. J Clin Oncol 29:2978-84, 2011

50. Wilson TR, Xiao Y, Spoerke JM, et al: Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples. Breast Cancer Res Treat 148:315-25, 2014

51. Cai H, Guo W, Zhang S, et al: A qualitative transcriptional signature to reclassify estrogen receptor status of breast cancer patients. Breast Cancer Res Treat 170:271-277, 2018

52. Wu NC, Wong W, Ho KE, et al: Comparison of central laboratory assessments of ER, PR, HER2, and Ki67 by IHC/FISH and the corresponding mRNAs (ESR1, PGR, ERBB2, and MKi67) by RT-qPCR on an automated, broadly deployed diagnostic platform. Breast Cancer Res Treat 172:327-338, 2018

53. Hyeon J, Cho SY, Hong ME, et al: NanoString nCounter(R) Approach in Breast Cancer: A Comparative Analysis with Quantitative Real-Time Polymerase Chain Reaction, In Situ Hybridization, and Immunohistochemistry. J Breast Cancer 20:286-296, 2017

54. Varga Z, Lebeau A, Bu H, et al: An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper(R). Breast Cancer Res 19:55, 2017

55. Wirtz RM, Sihto H, Isola J, et al: Biological subtyping of early breast cancer: a study comparing RT-qPCR with immunohistochemistry. Breast Cancer Res Treat 157:437-46, 2016

56. Sheffield BS, Kos Z, Asleh-Aburaya K, et al: Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor. Breast Cancer Res Treat 155:483-90, 2016

57. Laible M, Schlombs K, Kaiser K, et al: Technical validation of an RT-qPCR in vitro diagnostic test system for the determination of breast cancer molecular subtypes by quantification of ERBB2, ESR1, PGR and MKI67 mRNA levels from formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer 16:398, 2016

58. Cheang MC, Martin M, Nielsen TO, et al: Defining breast cancer intrinsic subtypes by quantitative receptor expression. Oncologist 20:474-82, 2015

59. Tramm T, Hennig G, Kyndi M, et al: Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection. Virchows Arch 463:775-86, 2013

60. Bastien RR, Rodriguez-Lescure A, Ebbert MT, et al: PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med Genomics 5:44, 2012

61. Kraus JA, Dabbs DJ, Beriwal S, et al: Semi-quantitative immunohistochemical assay versus oncotype DX((R)) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study. Mod Pathol 25:869-76, 2012 62. Muller BM, Kronenwett R, Hennig G, et al: Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue--a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol 20:1-10, 2011

63. Nielsen TO, Parker JS, Leung S, et al: A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16:5222-32, 2010

64. Badve SS, Baehner FL, Gray RP, et al: Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol 26:2473-81, 2008

65. Rimm DL, Leung SCY, McShane LM, et al: An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer. Mod Pathol 32:59-69, 2019

66. Peck M, Moffat D, Latham B, et al: Review of diagnostic error in anatomical pathology and the role and value of second opinions in error prevention. J Clin Pathol 71:995-1000, 2018

67. Tosteson ANA, Yang Q, Nelson HD, et al: Second opinion strategies in breast pathology: a decision analysis addressing over-treatment, under-treatment, and care costs. Breast Cancer Res Treat 167:195-203, 2018

68. Ahern TP, Beck AH, Rosner BA, et al: Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms. J Clin Pathol 70:428-434, 2017

69. Maeda I, Kubota M, Ohta J, et al: Effectiveness of computer-aided diagnosis (CADx) of breast pathology using immunohistochemistry results of core needle biopsy samples for synaptophysin, oestrogen receptor and CK14/p63 for classification of epithelial proliferative lesions of the breast. J Clin Pathol 70:1057-1062, 2017

70. Barnes M, Srinivas C, Bai I, et al: Whole tumor section quantitative image analysis maximizes between-pathologists' reproducibility for clinical immunohistochemistry-based biomarkers. Lab Invest 97:1508-1515, 2017

71. Liu WL, Wang LW, Chen JM, et al: Application of multispectral imaging in quantitative immunohistochemistry study of breast cancer: a comparative study. Tumour Biol 37:5013-24, 2016

72. Stalhammar G, Fuentes Martinez N, Lippert M, et al: Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod Pathol 29:318-29, 2016

73. Elmore JG, Tosteson AN, Pepe MS, et al: Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study. BMJ 353:i3069, 2016

74. Khazai L, Middleton LP, Goktepe N, et al: Breast pathology second review identifies clinically significant discrepancies in over 10% of patients. J Surg Oncol 111:192-7, 2015

75. Engelberg JA, Retallack H, Balassanian R, et al: "Score the Core" Web-based pathologist training tool improves the accuracy of breast cancer IHC4 scoring. Hum Pathol 46:1694-704, 2015

76. Gertych A, Mohan S, Maclary S, et al: Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis. Diagn Pathol 9:213, 2014

77. Ali HR, Irwin M, Morris L, et al: Astronomical algorithms for automated analysis of tissue protein expression in breast cancer. Br J Cancer 108:602-12, 2013

78. Jorns JM, Healy P, Zhao L: Review of estrogen receptor, progesterone receptor, and HER-2/neu immunohistochemistry impacts on treatment for a small subset of breast cancer patients transferring care to another institution. Arch Pathol Lab Med 137:1660-3, 2013

79. Nassar A, Cohen C, Agersborg SS, et al: A multisite performance study comparing the reading of immunohistochemical slides on a computer monitor with conventional manual microscopy for estrogen and progesterone receptor analysis. Am J Clin Pathol 135:461-7, 2011

80. Slodkowska J, Filas V, Buszkiewicz E, et al: Study on breast carcinoma Her2/neu and hormonal receptors status assessed by automated images analysis systems: ACIS III (Dako) and ScanScope (Aperio). Folia Histochem Cytobiol 48:19-25, 2010

81. Tuominen VJ, Ruotoistenmaki S, Viitanen A, et al: ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 12:R56, 2010 82. Lloyd MC, Allam-Nandyala P, Purohit CN, et al: Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it? J Pathol Inform 1:29, 2010

83. Aitken SJ, Thomas JS, Langdon SP, et al: Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. Ann Oncol 21:1254-61, 2009

84. Chaudhary LN, Jawa Z, Hanif A, et al: Does Progesterone Receptor Matter in the Risk of Recurrence for Patients With Ductal Carcinoma in Situ? WMJ 117:62-67, 2018

85. Hwang KT, Kim EK, Jung SH, et al: Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database. Breast Cancer Res Treat 169:311-322, 2018

86. Ravaioli S, Tumedei MM, Foca F, et al: Androgen and oestrogen receptors as potential prognostic markers for patients with ductal carcinoma in situ treated with surgery and radiotherapy. Int J Exp Pathol 98:289-295, 2017
87. Allred DC, Anderson SJ, Paik S, et al: Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol 30:1268-73, 2012
88. Cuzick J, Sestak I, Pinder SE, et al: Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol 12:21-9, 2011

89. Lin Y, Hatem J, Wang J, et al: Tissue microarray-based immunohistochemical study can significantly underestimate the expression of HER2 and progesterone receptor in ductal carcinoma in situ of the breast. Biotech Histochem 86:345-50, 2010