Protocol for the Examination of Resection Specimens From Pediatric Patients With Ewing Sarcoma

Version: 4.1.1.1
Protocol Posting Date: September 2022
The use of this protocol is recommended for clinical care purposes but is not required for accreditation purposes.

This protocol should be used for the following procedures AND tumor types:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resection</td>
<td>Includes specimens designated resection, amputation, limb salvage procedure,</td>
</tr>
<tr>
<td></td>
<td>or other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing sarcoma</td>
<td>Includes pediatric patients with osseous and extraosseous Ewing sarcoma</td>
</tr>
<tr>
<td></td>
<td>family of tumors</td>
</tr>
</tbody>
</table>

The following should NOT be reported using this protocol:

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle, incisional or skin biopsies (consider Pediatric Ewing Sarcoma Biopsy protocol)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Ewing sarcoma* (consider using Bone or Soft Tissue protocols)</td>
</tr>
<tr>
<td>Round cell sarcoma with EWSR1-non-ETS fusions, CIC-rearranged sarcoma, or</td>
</tr>
<tr>
<td>sarcoma with BCOR-genetic alterations (consider using Bone or Soft Tissue protocols)</td>
</tr>
</tbody>
</table>

*Ewing sarcoma in adults may be treated differently than pediatric Ewing sarcoma and use of the AJCC TNM staging system remains appropriate for adult patients.

Authors
Jessica L. Davis, MD*; Archana Shenoy, MD; Lea Surrey, MD; Alyaa Al-Ibraheemi, MD; Katherine A. Janeway, MD; Elyssa Rubin, MD; Erin R. Rudzinski, MD.
With guidance from the CAP Cancer and CAP Pathology Electronic Reporting Committees.
* Denotes primary author.

Accreditation Requirements
The use of this case summary is recommended for clinical care purposes but is not required for accreditation purposes. The core and conditional data elements are routinely reported. Non-core data elements are indicated with a plus sign (+) to allow for reporting information that may be of clinical value.
Summary of Changes

v 4.1.1.1

- Corrected spelling error and format in cover page
- The 'Expert Consultation' question was made optional
- Added Explanatory 'Note A' and associated with the 'Expert Consultation' question
Reporting Template
Protocol Posting Date: September 2022
Select a single response unless otherwise indicated.

CASE SUMMARY: (EWING SARCOMA: Resection)

EXPERT CONSULTATION

+Expert Consultation (Note A)
___ Pending - Completion of this CAP Cancer Protocol is awaiting expert consultation
___ Completed - This CAP Cancer Protocol or some elements have been performed following expert consultation
___ Not applicable

CLINICAL

Preresection Treatment (select all that apply)
___ No known preresection therapy
___ Chemotherapy performed
___ Radiation therapy performed
___ Therapy performed, type not specified
___ Not specified

SPECIMEN (Note B)

Procedure (Note C)
___ Resection
___ Amputation (specify type): _________________
___ Limb salvage procedure (specify type): _________________
___ Other (specify): _________________
___ Not specified

TUMOR

Multiple Primary Sites
___ Not applicable
___ Present: _________________

Please complete a separate checklist for each primary site

Tumor Site
___ Osseous
___ Long bones of upper limb, scapula and associated joints (specify): _________________
___ Short bones of upper limb and associated joints (specify): _________________
___ Long bones of lower limb and associated joints (specify): _________________
___ Short bones of lower limb and associated joints (specify): _________________
___ Overlapping lesion of bones, joints and articular cartilage of limbs (specify): _________________
___ Bone of limb, NOS (specify): _________________
___ Bones of skull and face and associated joints (excluding mandible C41.1) (specify):

___ Mandible (specify):

___ Vertebral column (excluding sacrum and coccyx C41.4) (specify):

___ Rib, sternum, clavicle and associated joints (specify):

___ Pelvic bones, sacrum, coccyx and associated joints (specify):

___ Overlapping lesion of bones, joints and articular cartilage (specify):

___ Bone, NOS:

___ Extraosseous

___ Heart / mediastinum

___ Heart (specify):

___ Anterior mediastinum (specify):

___ Posterior mediastinum (specify):

___ Mediastinum, NOS:

___ Overlapping lesion of heart, mediastinum and pleura (specify):

___ Peritoneum and / or retroperitoneum

___ Retroperitoneum:

___ Peritoneum, including omentum and mesentery (specify parts):

___ Peritoneum, NOS:

___ Other soft tissue

___ Head, face, and neck (specify):

___ Upper limb and shoulder (specify):

___ Lower limb and hip (specify):

___ Thorax (specify):

___ Abdomen (specify):

___ Pelvis (specify):

___ Trunk (specify):

___ Overlapping lesion (specify):

___ Other, NOS:

___ Not specified

Tumor Size (Note C)

___ Greatest dimension in Centimeters (cm): ____________ cm

+**Additional Dimension in Centimeters (cm): ____ x ____ cm**

___ Cannot be determined (explain):

Site(s) Involved by Direct Tumor Extension (select all that apply)

___ Epiphysis or apophysis

___ Metaphysis

___ Diaphysis

___ Cortex

___ Medullary cavity

___ Surface

___ Joint

___ Adjacent soft tissue:

___ Other (specify):

___ Cannot be determined:
Lymphovascular Invasion (Note D)
___ Not identified
___ Present
___ Cannot be determined: _________________

Treatment Effect (Note E)
Treatment effect includes necrosis, fibrosis and other treatment related changes.
___ Not applicable (no preresection therapy)
___ Not identified
___ Present

Percentage of Treatment Effect
___ Specify percentage: _________________ %
___ Other (specify): _________________
___ Cannot be determined
___ Cannot be determined: _________________

+Tumor Comment: _________________

MARGINS (Note F)

Margin Status
___ All margins negative for tumor

Closest Margin(s) to Tumor (select all that apply)
___ Bone (specify): _________________
___ Soft tissue (specify): _________________
___ Parenchymal (specify): _________________
___ Other (specify): _________________
___ Cannot be determined (explain): _________________

Distance from Tumor to Closest Margin
Specify in Centimeters (cm)
___ Exact distance: _________________ cm
___ Greater than: _________________ cm
___ Other (specify): _________________
___ Cannot be determined: _________________
___ Tumor present at margin

Margin(s) Involved by Tumor
___ Specify involved margin(s): _________________
___ Cannot be determined (explain): _________________
___ Cannot be determined: _________________

+Margin Comment: _________________
REGIONAL LYMPH NODES

Regional Lymph Node Status
___ Not applicable (no regional lymph nodes submitted or found)
___ Regional lymph nodes present
 ___ All regional lymph nodes negative for tumor
 ___ Tumor present in regional lymph node(s)

Number of Lymph Nodes with Tumor
___ Exact number (specify): ______________________
___ At least (specify): ______________________
___ Other (specify): ______________________
___ Cannot be determined (explain): ______________________

Number of Lymph Nodes Examined
___ Exact number: ______________________
___ At least (specify): ______________________
___ Other (specify): ______________________
___ Number cannot be determined (explain): ______________________

+Regional Lymph Node Comment: ______________________

DISTANT METASTASIS

Distant Site(s) Involved, if applicable# (select all that apply)
___ Not applicable
___ Lung: ______________________
___ Bone: ______________________
___ Other (specify): ______________________
___ Cannot be determined: ______________________

PATHOLOGIC STAGE CLASSIFICATION (pTNM, AJCC 8th Edition) (Note G)
The AJCC staging systems for bone and soft tissue based tumors may be used for pathologic staging if desired.

SPECIAL STUDIES (Note H)
Results of these studies may not be available at the time of the final report

+Immunohistochemistry (specify): ______________________

Cytogenetic Findings
___ Not performed
___ Pending
___ EWSR1 rearrangement, fusion partner not known
___ EWSR1-FLI1 gene rearrangement
___ EWSR1-ERG gene rearrangement
___ Other EWSR1 gene rearrangement (specify): ______________________
___ Non-EWSR1 variant translocation (specify): ______________________
__ Other (specify): ___________________
__ No rearrangement identified
__ Not known

Method for Cytogenetic Studies
__ Not applicable (Cytogenetic Studies not performed)
__ Conventional karyotyping
__ Fluorescent in situ hybridization (FISH)
__ Reverse transcriptase polymerase chain reaction (RT-PCR)
__ Other (specify): ___________________
__ Not known

ADDITIONAL FINDINGS
+Additional Findings (specify): ________________

COMMENTS
Comment(s): __________________
Explanatory Notes

A. Expert Consultation
Expert consultation is not required. This question has been added to annotate, if so desired, that the case has been sent out for consultation and thus items of the CAP protocol could not be completed pending expert consultation. Completion of the CAP protocol will then be performed following consultation.

B. Tissue Handling
Tissue specimens optimally are received fresh/unfixed because of the importance of ancillary studies, such as cytogenetics and molecular testing, which may prefer fresh tissue. First priority should always be given to formalin-fixed tissues (FFPE) for morphologic evaluation. Ideally, some tissue can be submitted for FFPE without decalcification or following decalcification in EDTA or ETDA+acid decalcification solutions to preserve nucleic acids for molecular testing, to including FISH, RT-PCR, and/or next generation sequencing (NGS). Decalcification in pure acid decalcification solutions degrade nucleic acids and limit molecular testing. Following submission of FFPE, submission of fresh tissue for cytogenetics and/or snap freezing a minimum of 100 mg of viable tumor may be needed potential molecular studies and/or COG study purposes. Molecular testing on formalin-fixed paraffin-embedded tissue may be performed for FISH evaluation of EWSR1 rearrangement, for RT-PCR evaluation of EWSR1-FLI1, EWSR1-ERG, and other ES translocations, or NGS. When the amount of tissue is limited, the pathologist can keep the frozen tissue aliquot used for frozen section (usually done to determine sample adequacy and viability) in a frozen state (-70°C is preferable). Translocations may be detected using RT-PCR on frozen or fixed paraffin-embedded tissue, or FISH on touch preparations made from fresh tissue or formalin-fixed paraffin-embedded tissue.

Note that classification of many subtypes of sarcoma is not always dependent upon special studies, such as cytogenetics or molecular genetics, but frozen tissue may be required to enter patients into treatment protocols. Discretion should be used in triaging tissue from sarcomas. Adequate tissue should be submitted for conventional light microscopy before tissue has been taken for cytogenetics, electron microscopy, or molecular analysis.

References

C. Procedures

Tumor Resection
Resection specimens may be intralesional, marginal, wide, or radical in extent. Intralesional resections extend through tumor planes, with gross or microscopic residual tumor identifiable at surgical margins. A marginal resection involves a margin formed by reactive tissue surrounding the tumor. A wide radical resection has surgical margins that extend through normal tissue, usually external to the anatomic compartment containing the tumor. For all types of resections, marking (tattoo with ink followed by use of a mordant) and orientation of the specimen (prior to cutting) by the surgeon are highly recommended for accurate pathologic evaluation. Full representative mapping of the specimen is also recommended, as discussed below.

A full sagittal section of a bone tumor resection specimen, as illustrated in Figure 1, allows for mapping of the entire central face of the tumor and adjacent marginal tissue. Sectioning the specimen in a
longitudinal plane that allows for evaluation of the tumor in its greatest cross-sectional dimension is important. Soft tissue and bone marrow margins should be inked and taken prior to sectioning the specimen with both amputation and limb salvage specimens. Freezing of the specimen prior to cutting with a bone saw (with intraosseous specimens) is the preferred method at some institutions. This face of the specimen should be documented using digital imaging photography or alternatively by a photocopy of the specimen when sealed in a plastic bag. As shown in Figure 1 of an amputation specimen with soft tissue in place, the central full face of the specimen and lesional region can be mapped and blocked following fixation and with adequate decalcification for complete microscopic examination, including estimate of percentage of tumor necrosis. If possible, at least one section of tumor without decalcification or decalcification with less harsh decalcification methods to include EDTA or ETDA+formic acid is recommended to preserve integrity of nuclei acids.

Figure 1. Grid diagram of histologic sections taken, superimposed on photograph of a sagittally-sectioned amputation specimen including the distal femur and proximal tibia.

References

D. Lymphovascular Invasion (LVI)
Lymphovascular invasion (LVI) indicates whether microscopic lymphovascular invasion is identified in the pathology report. LVI includes lymphatic invasion, vascular invasion, or lymphovascular invasion.
Evaluation of LVI may require immunohistochemical staining for endothelial markers (CD31, CD34, D240, etc). By American Joint Committee on Cancer (AJCC) and International Union Against Cancer (UICC) convention, LVI does not affect the T category indicating local extent of tumor unless specifically included in the definition of the T category.

E. Prognostic Factors
Typically, ES has a lobular growth pattern consisting of tumor cells that are distinctly monotonous in their nuclear uniformity. Nuclei measure 10 µm to 15 µm in diameter with distinct nuclear membranes, finely granular chromatin, and 1 to 2 inconspicuous nucleoli. Cytoplasm is poorly defined, scant, pale-staining, and may be vacuolated due to irregular glycogen deposition. Some cases of ES may show increased nuclear size, more pronounced atypia, and increased mitotic activity. Multinucleated giant cells are not seen. Large areas of tumor necrosis with “ghost-like tumor cells” may be striking and in some biopsy specimens may represent the majority of the tumor. Areas of neuroectodermal differentiation (Homer-Wright rosettes; rarely Flexner-Wintersteiner rosettes, ganglionic differentiation or primitive neuroepithelium) may be evident in some tumors. Some cases may show extensive epithelial differentiation, in particular the adamantinoma-like variant most commonly seen in the head-neck region. Currently, extraosseous Ewing sarcoma receives identical therapy as intraosseous Ewing sarcoma. There are no histopathologic ES subtypes that possess an established prognostic importance.

A summary of the prognostic factors is detailed below. Of all prognostic factors, age at onset, tumor size, site, and stage have proven to be the most important in predicting outcome.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Favorable Prognosis</th>
<th>Unfavorable Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Less than 10 years (EFS 69%); 10-17 years (EFS 74%)</td>
<td>Greater than or equal to 18 years (EFS 44%)</td>
</tr>
<tr>
<td>Site</td>
<td>Distal extremity (EFS 74%); Proximal extremity (EFS 62%)</td>
<td>Pelvis (EFS 50%)</td>
</tr>
<tr>
<td>Size</td>
<td>Less than 8 cm greatest diameter (EFS 75%)</td>
<td>Greater than or equal to 8 cm in greatest dimension (EFS 55%)</td>
</tr>
<tr>
<td>Stage</td>
<td>Nonmetastatic (EFS approximately 70%) tumor</td>
<td>Metastatic tumor (EFS approximately 20%)</td>
</tr>
</tbody>
</table>

Definition: EFS, event-free survival.

Histologic response to chemotherapy is an excellent predictor of outcome in osteosarcomas and may also be of value in ES. However, the evaluation of percentage necrosis in ES can be difficult, because unlike osteosarcoma, there is no residual acellular osteoid framework left to demarcate the original tumor bed. Furthermore, data regarding correlation of necrosis with outcome in extraosseous ES is not available. Currently, histologic assessment of percentage necrosis is not used formally to guide therapy in ES; however, it is recommended that the report includes the estimated percentage of necrosis.

References

F. Margins
The extent of resection (ie, gross residual disease versus complete resection with negative margins) has the strongest influence on local control of malignancy. The definition of what constitutes a sufficiently
“wide” margin of normal tissue in the management of ES and the significance of reactive and/or necrotic tissue at the margin are current study questions for the Children’s Oncology Group, and may evolve in the future. Currently, any tumor at the margin, whether viable, nonviable, or treated, is considered positive. The significance of treated tumor at the margin when there has been an excellent chemotherapeutic response (ie, greater than 90% tumor necrosis) remains unclear. There is currently no consensus as to whether margins involved by treated tumor require further treatment, and this is considered a negative margin on some studies. The presence of treated tumor at the margin should be reported, however, and can be included in the comment section of the checklist. The following margins are considered adequate:

- Cortical bone margin: 2 to 5 cm
- Fascia, periosteum, and intermuscular septa: 2 mm
- Fat, muscle, and medullary bone: 5 mm

With Ewing sarcoma involving an encapsulated organ, surgical margins are considered to be negative if the organ’s capsule is not surgically violated or breached by the tumor.

References

G. TNM and Stage Groupings
The AJCC TNM staging system for bone or soft tissue tumors\(^1\) may be used for pathologic staging of Ewing sarcoma and can be reported in the Comment section. However, the presence or absence of metastatic disease (a feature that may not be known to the pathologist) is the primary factor in the staging and treatment of pediatric patients with Ewing sarcoma.

References

H. Ancillary Studies
Immunohistochemistry
Immunohistochemistry with monoclonal antibodies against the cell surface glycoprotein CD99 is positive in virtually all cases of ES.\(^1\) This glycoprotein is diffusely expressed in the vast majority of cases in a membranous pattern (Figure 2). The results of staining using monoclonal antibodies O13, HBA71, and 12E7 are similar, but individual tumors may exhibit better staining with one of these antibodies versus other antibodies.
Lymphoblastic lymphomas/leukemias, rhabdomyosarcomas, synovial sarcomas, solitary fibrous tumors, rhabdoid tumors, neuroendocrine tumors, desmoplastic small round cell tumors, and mesenchymal chondrosarcomas may also demonstrate immunoreactivity to CD99. In some of these tumors, CD99 immunostaining is often weakly granular and intracytoplasmic; in others (lymphoblastic lymphoma/leukemia, occasional cases of poorly differentiated synovial sarcoma, alveolar rhabdomyosarcoma), distinct membrane staining is present, as seen in ES. Because these other tumors with small round cell morphology can exhibit CD99 expression, it is very important to consider including other immunohistochemical stains such as muscle markers (desmin, muscle-specific actin, myoD1, myogenin), S-100, epithelial markers (epithelial membrane antigen, cytokeratin), INI-1, and lymphoid markers (CD45, CD30, Tdt, T-cell and/or B-cell markers) when CD99 is performed to properly exclude CD99-expressing tumors. Cytokeratin positivity may be seen in ES and may be diffusely positive in the adamantinoma-like variant of Ewing sarcoma.\(^2,3\) Newer immunohistochemical antibodies, such as NKX2.2, may also be useful for the diagnosis of ES, although NKX2.2 staining may rarely be seen in other small round cell tumors.\(^4\) The value of other immunohistochemical markers for diagnosis, such as Ki-67, p53, and C-kit (CD117), has not been established.

Chromosomal Translocations

The 2020 World Health Organization (WHO) classification of bone and soft tissue tumors defines Ewing sarcoma as a round cell sarcoma harboring a FET-ETS gene fusion. FET represents a family of genes to include FUS, EWSR1, and TAF15; whereas the ETS gene family is a large family of transcription factors involved in cell cycle regulation, cellular differentiation, among other functions. In relation to Ewing sarcoma, the characteristic translocations involve the EWSR1 gene at 22q12, most often either the FLI1 gene at 11q24 (90-95%) or the ERG gene at 21q22 (5-10%). These two fusions account for the vast majority of genetic alterations in ES. It should be emphasized that there are numerous other EWSR1 or FUS gene partners that occur in a minority (5%-10%) of ES. The failure to identify an EWSR1-FLI or EWSR1-ERG translocation by RT-PCR or cytogenetics does not exclude ES from the diagnosis. If RT-PCR is negative, in the context of a tumor suspicious for ES, other molecular studies (cytogenetics, NGS) may be important for identification of the less common ES translocations and for discovering novel EWSR1 translocations in ES. Some of the less common ES translocations involve FUS (ch16) rather than EWSR1, or involve other ETS partners including ETV1, ETV4, or FEV. FISH analysis for EWSR1 (or FUS) is helpful as a first step and may confirm the diagnosis in those tumors with histomorphologic...
features and immunohistochemical phenotypes of ES. Because other small round cell tumors of childhood can have EWSR1 rearrangements with specific tumor-defining partners, EWSR1 FISH positivity alone is not diagnostic of ES. Some of these tumors with EWSR1 rearrangement include angiomatoid fibrous histiocytoma, clear cell sarcoma of soft parts, desmoplastic round cell tumor, and extraskeletal myxoid chondrosarcoma, as well as a subset of myxoid liposarcomas and myoepithelial carcinoma. This underscores the necessity for histologic and immunohistochemical correlation with FISH and/or cytogenetic data.5

Therefore, considerations when choosing testing methodologies may include, classic versus non-classic histomorphology, immunophenotype, need to confirm translocation partner, turnaround time, cost, and ultimately may be depend on the availability of testing modalities at each institution. While obtaining evidence of a diagnostic fusion is recommended, it should be noted that absence of a fusion can either result from 1) true lack of fusion, 2) test failure (eg. FISH for EWSR-ERG fusions can miss rearrangements) or 3) mismatch between the testing approach and the fusion present (eg. EWSR1-ERG present and test is for RT-PCR for EWSR1-FLI1).

Of note, the specific EWSR1 translocation and subtype based upon exon fusion type do not influence treatment, prognosis, or outcome.6

References