

Protocol for the Examination of Specimens From Patients With Neuroendocrine Tumors (Carcinoid Tumors) of the Stomach

Version: Stomach NET 4.0.0.2 Protocol Posting Date: February 2020

CAP Laboratory Accreditation Program Protocol Required Use Date: November 2020

Includes pTNM requirements from the 8th Edition, AJCC Staging Manual

For accreditation purposes, this protocol should be used for the following procedures AND tumor types:

Procedure	Description
Gastrectomy (Partial or Complete)	
Tumor Type	Description
Well-differentiated neuroendocrine	
tumors of the stomach	

This protocol is NOT required for accreditation purposes for the following:

Procedure
Biopsy
Excisional biopsy (includes endoscopic resection and polypectomy)
Primary resection specimen with no residual cancer (eg, following neoadjuvant therapy)
Recurrent tumor
Cytologic specimens

The following tumor types should NOT be reported using this protocol:

Tumor Type
Poorly differentiated neuroendocrine carcinoma including small cell and large cell neuroendocrine
carcinoma (consider Stomach protocol)
Other epithelial carcinomas including mixed neuroendocrine-non-neuroendocrine neoplasms (consider
Stomach protocol)
Lymphoma (consider Hodgkin or non-Hodgkin Lymphoma protocols)
Gastrointestinal stromal tumor (GIST) (consider GIST protocol)
Non-GIST sarcoma (consider Soft Tissue protocol)

Authors

Chanjuan Shi, MD, PhD*; Volkan Adsay, MD; Emily K. Bergsland, MD; Jordan Berlin, MD; Philip A. Branton, MD; Patrick L. Fitzgibbons, MD; Wendy L. Frankel, MD; Sanjay Kakar, MD; Veronica Klepeis, MD, PhD; David S. Klimstra, MD; Joseph T. Lewis, MD; Laura H. Tang, MD; Eugene Woltering, MD; Mary K. Washington MD, PhD

With guidance from the CAP Cancer and CAP Pathology Electronic Reporting Committees.

* Denotes primary author. All other contributing authors are listed alphabetically.

Accreditation Requirements

This protocol can be utilized for a variety of procedures and tumor types for clinical care purposes. For accreditation purposes, only the definitive primary cancer resection specimen is required to have the core and conditional data elements reported in a synoptic format.

- <u>Core data elements</u> are required in reports to adequately describe appropriate malignancies. For accreditation purposes, essential data elements must be reported in all instances, even if the response is "not applicable" or "cannot be determined."
- <u>Conditional data elements</u> are only required to be reported if applicable as delineated in the protocol. For instance, the total number of lymph nodes examined must be reported, but only if nodes are present in the specimen.
- <u>Optional data elements</u> are identified with "+" and although not required for CAP accreditation purposes, may be considered for reporting as determined by local practice standards.

The use of this protocol is not required for recurrent tumors or for metastatic tumors that are resected at a different time than the primary tumor. Use of this protocol is also not required for pathology reviews performed at a second institution (ie, secondary consultation, second opinion, or review of outside case at second institution).

Synoptic Reporting

All core and conditionally required data elements outlined on the surgical case summary from this cancer protocol must be displayed in synoptic report format. Synoptic format is defined as:

- Data element: followed by its answer (response), outline format without the paired "Data element: Response" format is NOT considered synoptic.
- The data element should be represented in the report as it is listed in the case summary. The response for any data element may be modified from those listed in the case summary, including "Cannot be determined" if appropriate.
- Each diagnostic parameter pair (Data element: Response) is listed on a separate line or in a tabular format to achieve visual separation. The following exceptions are allowed to be listed on one line:
 - o Anatomic site or specimen, laterality, and procedure
 - o Pathologic Stage Classification (pTNM) elements
 - o Negative margins, as long as all negative margins are specifically enumerated where applicable
- The synoptic portion of the report can appear in the diagnosis section of the pathology report, at the end of the report or in a separate section, but all Data element: Responses must be listed together in one location

Organizations and pathologists may choose to list the required elements in any order, use additional methods in order to enhance or achieve visual separation, or add optional items within the synoptic report. The report may have required elements in a summary format elsewhere in the report IN ADDITION TO but not as replacement for the synoptic report i.e. all required elements must be in the synoptic portion of the report in the format defined above.

Summary of Changes

Version 4.0.0.2 Background Notes (WHO 2019)

Surgical Pathology Cancer Case Summary

Protocol posting date: February 2020

STOMACH:

Select a single response unless otherwise indicated.

Procedure (Note A)

- ____ Endoscopic resection
- ____ Partial gastrectomy, proximal
- ____ Partial gastrectomy, distal
- Partial gastrectomy, other (specify):
- ____ Total gastrectomy
- ____Other (specify): ______
- ____ Not specified

Tumor Site (select all that apply) (Note B)

- ____ Gastric cardia/fundus
- ____ Gastric body
- ____ Gastric antrum
- ____ Gastric pylorus
- ____ Stomach, not otherwise specified
- ____ Other (specify): ___

Tumor Size (Note C)

Greatest dimension (centimeters): ____ cm (specify size of largest tumor if multiple tumors are present) + Additional dimensions (centimeters): ____ x ___ cm

____ Cannot be determined (explain):

Tumor Focality

- ____ Unifocal
- ____ Multifocal (specify number of tumors): _____
- ____ Cannot be determined

Histologic Type and Grade (Notes D and E)#

- ____ G1: Well-differentiated neuroendocrine tumor
- ____ G2: Well-differentiated neuroendocrine tumor
- ____ G3: Well-differentiated neuroendocrine tumor
- ____ Other (specify):
- ____ GX: Well-differentiated neuroendocrine tumor, grade cannot be assessed
- ____ Not applicable

Note: For poorly differentiated (high-grade) neuroendocrine carcinomas, the College of American Pathologists (CAP) protocol for carcinoma of the stomach¹ should be used.

Mitotic rate and/or Ki67 labeling index is required to determine histologic grade

Mitotic Rate (Note E) [#]	
<2 mitoses/2mm ²	
2-20 mitoses/2mm ²	
+ Specify mitoses per 2mm ² :	
>20 mitoses per 2mm ²	
+ Specify mitoses per 2mm ² :	
Cannot be determined (explain):	
Not applicable	

+ Data elements preceded by this symbol are not required for accreditation purposes. These optional elements may be clinically important but are not yet validated or regularly used in patient management.

Mitotic rate should be reported as number of mitoses per 2 mm², by evaluating at least 10 mm² in the most mitotically active part of the tumor (eg, if using a microscope with a field diameter of 0.55 mm, count 42 high power fields [10 mm²] and divide the resulting number of mitoses by 5 to determine the number of mitoses per 2 mm² needed to assign tumor grade).

Ki-67 Labeling Index (Note E)

<3%	
3% to 20%	
+ Specify Ki-67 percentage:%	
>20%	
+ Specify Ki-67 percentage:%	
Cannot be determined (explain):	
Not applicable	
· ·	

Tumor Extension

- ____ No evidence of primary tumor
- ____ Tumor invades the lamina propria
- ____ Tumor invades the submucosa
- ____ Tumor invades the muscularis propria
- ____ Tumor invades through the muscularis propria into subserosal tissue without penetration of overlying serosa
- _____ Tumor penetrates visceral peritoneum (serosa)
- Tumor invades other organs or adjacent structures (specify):
- ____ Cannot be assessed

Margins (Note F)

Note: Use this section only if all margins are uninvolved and all margins can be assessed.

- ____ All margins are uninvolved by tumor
 - Margins examined:
 - Note: Margins may include proximal, distal, omental (radial), deep, mucosal, and others.
 - + Distance of tumor from closest margin (millimeters or centimeters): ____ mm or ____ cm
 - + Specify closest margin: _____

Individual margin reporting required if any margins are involved or margin involvement cannot be assessed

For gastrectomy specimens only

Proximal Margin

- ____ Cannot be assessed
- ____ Uninvolved by tumor
- ____ Involved by tumor

Distal Margin

- ____ Cannot be assessed
- ____ Uninvolved by tumor
- ____ Involved by tumor

Omental (Radial) Margin (Note F)

- Cannot be assessed
- ____ Uninvolved by tumor
- ____ Involved by tumor

Other Margin(s) (required only if applicable)

Specify margin(s): _

- ____ Cannot be assessed
- ____ Uninvolved by tumor
- ____ Involved by tumor

+ Data elements preceded by this symbol are not required for accreditation purposes. These optional elements may be clinically important but are not yet validated or regularly used in patient management.

For endoscopic resections only

Deep Margin

- Cannot be assessed Uninvolved by tumor
- Involved by tumor

Mucosal Margin

- ____ Cannot be assessed
- ____ Uninvolved by tumor
- ____ Involved by tumor

Other Margin(s) (required only if applicable)

Specify margin(s): _____ Cannot be assessed

- Uninvolved by tumor
- Involved by tumor
- ____ Involved by tumo

Lymphovascular Invasion

- ____ Not identified
- ____ Present
- ____ Cannot be determined

+ Perineural Invasion

- + ____ Not identified
- + ____ Present
- + ____ Cannot be determined

Regional Lymph Nodes

____ No lymph nodes submitted or found

Lymph Node Examination (required only if lymph nodes are present in the specimen)

Number of Lymph Nodes Involved: _

____ Number cannot be determined (explain): _____

Number of Lymph Nodes Examined: _

____ Number cannot be determined (explain): _____

Pathologic Stage Classification (pTNM, AJCC 8th Edition) (Note G)

Note: Reporting of pT, pN, and (when applicable) pM categories is based on information available to the pathologist at the time the report is issued. Only the applicable T, N, or M category is required for reporting; their definitions need not be included in the report. The categories (with modifiers when applicable) can be listed on 1 line or more than 1 line.

TNM Descriptors (required only if applicable) (select all that apply)

- ____ m (multiple primary tumors)
- ____ r (recurrent)
- ____ y (posttreatment)

Primary Tumor (pT)

- ____ pTX: Primary tumor cannot be assessed
- ____ pT0: No evidence of primary tumor
- ____ pT1#: Invades the lamina propria or submucosa and less than or equal to 1 cm in size
- ____ pT2#: Invades the muscularis propria or greater than 1 cm in size
- ____ pT3#: Invades through the muscularis propria into subserosal tissue without penetration of overlying serosa
- ____pT4#: Invades visceral peritoneum (serosa) or other organs or adjacent structures

[#] Note: For any T, add (m) for multiple tumors $[TX(#) \text{ or } TX(m), \text{ where } X = 1-4 \text{ and } # = \text{number of primary tumors identified}^{##}];$ for multiple tumors with different Ts, use the highest.

^{##} Example: If there are 2 primary tumors, 1 of which penetrates only the subserosa, we define the primary tumor as either T3(2) or T3(m).

Regional Lymph Nodes (pN)

- ____ pNX: Regional lymph nodes cannot be assessed
- ____ pN0: No regional lymph node metastasis
- ____ pN1: Regional lymph node metastasis

Distant Metastasis (pM) (required only if confirmed pathologically in this case)

- ____ pM1: Distant metastasis
- ____ pM1a: Metastasis confined to liver
- _____pM1b: Metastasis in at least one extrahepatic site (eg, lung, ovary, nonregional lymph node, peritoneum, bone)
 - Specify site(s), if known: _
- ____ pM1c: Both hepatic and extrahepatic metastases
 - Specify site(s), if known:

+ Additional Pathologic Findings (select all that apply) (Note H)

- + ____ None identified
- + ____ Atrophic gastritis
- + ____ Intestinal metaplasia of gastric mucosa
- + ____ Glandular dysplasia of gastric mucosa
- + ____ Endocrine cell hyperplasia
- + ____ Absence of parietal cells
- + ____ Tumor necrosis
- + ____ Other (specify): _____

+ Comment(s)

Explanatory Notes

A. Application and Tumor Location

This protocol applies to well-differentiated neuroendocrine tumors (carcinoid tumors) of the stomach. Poorly differentiated neuroendocrine carcinomas (small cell and large cell neuroendocrine carcinoma) and tumors with mixed glandular/neuroendocrine differentiation are not included¹.

Because of site-specific similarities in histology, immunohistochemistry, and histochemistry, neuroendocrine tumors of the digestive tract have traditionally been subdivided into those of foregut, midgut, and hindgut origin (Table 1). In general, the distribution pattern along the gastrointestinal (GI) tract parallels that of the progenitor cell type, and the anatomic site of origin of GI neuroendocrine tumors is an important predictor of clinical behavior.²

5			
	Foregut Tumors	Midgut Tumors	Hindgut Tumors
Site	Stomach, Proximal Duodenum	Jejunum, lleum, Appendix, Proximal Colon	Distal Colon, Rectum
Immunohistochemistry Chromogranin A Synaptophysin Serotonin	86%-100% + 50% + 33% + ³	82%-92% + 95%-100% + 86% + ³	40%-58% + 94%-100% + 45%-83% + ³⁻⁷
Other Immunohistochemical Markers	Rarely, + for pancreatic polypeptide, histamine, gastrin, somatostatin, vasoactive intestinal peptide (VIP), or adrenocorticotropic hormone (ACTH)	Prostatic acid phosphatase + in 20%-40% ^{8,9}	Prostatic acid phosphatase + in 20%-82% ³⁻⁹

Table 1. Site of Origin of Gastrointestinal Neuroendocrine Tumors

Rare

References

Carcinoid Syndrome

1. Shi C, Berlin J, Branton P, et al. Protocol for the Examination of Specimens From Patients with Carcinoma of the Stomach. 2017. Available at www.cap.org/cancerprotocols.

5%-39% 10,11

Rare

- 2. Rorstad O. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. *J Surg Oncol.* 2005;89(3):151-160.
- 3. Eckhauser FE, Argenta LC, Strodel WE, et al. Mesenteric angiopathy, intestinal gangrene, and midgut carcinoids. *Surgery.* 1981;90(4):720-728.
- 4. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. *Cancer.* 2003;97(4):934-959.
- Graeme-Cook F. Neuroendocrine tumors of the GI tract and appendix. In: Odze RD, Goldblum JR, Crawford JM, eds. Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas. Philadelphia, PA: Saunders; 2004: 483-504.
- 6. Anlauf M, Garbrecht N, Henopp T, et al. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: distinct clinico-p
- 7. Eckhauser FE, Argenta LC, Strodel WE, et al. Mesenteric angiopathy, intestinal gangrene, and midgut carcinoids. *Surgery.* 1981;90(4):720-728.
- 8. Kimura N, Sasano N. Prostate-specific acid phosphatase in carcinoid tumors. *Virchows Arch A Pathol Anat Histopathol.* 1986;410(3):247-251.
- Nash SV, Said JW. Gastroenteropancreatic neuroendocrine tumors: a histochemical and immunohistochemical study of epithelial (keratin proteins, carcinoembryonic antigen) and neuroendocrine (neuron-specific enolase, bombesin and chromogranin) markers in foregut, midgut, and hindgut tumors. *Am J Clin Pathol.* 1986;86(2):415-422.
- 10. Williams GT. Endocrine tumours of the gastrointestinal tract: selected topics. *Histopathology.* 2007;50(1):30-41.

11. Garbrecht N, Anlauf M, Schmitt A, et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. *Endocr Rel Cancer.* 2008;15(1):229-241.

B. Site-Specific Features

Well-differentiated gastric neuroendocrine tumors are divided into 3 types (Table 2).¹ Type 1 enterochromaffin like (ECL)-cell tumors arising in the setting of chronic atrophic gastritis (often autoimmune) with associated hypergastrinemia are the most common. These lesions are composed of enterochromaffin-like (ECL) cells and are usually found as multiple small nodules/polyps in the body of the stomach and limited to the mucosa and submucosa. Type 1 lesions are generally indolent and may regress; lymph node metastases are very rare and occur only when the tumors are large (greater than 2 cm) and infiltrate the muscularis propria.

Type 2 ECL-cell gastric neuroendocrine tumors are rare. These multifocal small tumors, which are associated with multiple endocrine neoplasia (MEN) type 1 with Zollinger-Ellison syndrome, develop in the body of the stomach, are usually smaller than 1.5 cm, and are confined to the mucosa or submucosa. However, in contrast to type 1 tumors, 10% to 30% metastasize. Tumors greater than 2 cm and invading the muscularis propria and exhibiting vascular invasion are more likely to metastasize.

Type 3 gastric neuroendocrine tumors, the second most common neuroendocrine tumor in the stomach, are sporadic solitary tumors that are unassociated with atrophic gastritis, hypergastrinemia, or endocrine cell hyperplasia. These tumors may occur anywhere in the stomach. Metastasis is common and is associated with larger mean size, angioinvasion, and invasion of muscularis propria. Surgical resection is usually advised for solitary gastric neuroendocrine tumors, particularly those larger than 2.0 cm, but tumors smaller than 1.0 cm have been rarely reported to metastasize.²

In addition to the above 3 types, the new WHO book has included 3 rare variants: 1) Serotonin-producing enterochromaffin (EC)-cell neuroendocrine tumors, which have morphologic features similar to those of ileal EC-cell neuroendocrine tumors; 2) Gastrin-producing G-cell neuroendocrine tumor and gastrinoma; and 3) Somatostatin-producing D-cell neuroendocrine tumors.¹

References

- 1. WHO Classification of Tumours Editorial Board. *Digestive system tumours*. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1).
- 2. Xie SD, Wang LB, Song XY, Pan T. Minute gastric carcinoid with regional lymph node metastasis: a case report and review of the literature. *World J Gastroenterol.* 2004;10(16):2461-2463

C. Tumor Size

For well-differentiated neuroendocrine tumors in any part of the gastrointestinal tract, size greater than 2.0 cm is associated with a higher risk of lymph node metastasis. In the stomach, types 3 neuroendocrine tumors are significantly larger than type 1 tumors,¹ which usually measure 1 cm or less^{2,3} (Table 2). Tumor size correlates with depth of invasion for gastric neuroendocrine tumors, with larger tumors more likely to be deeply infiltrative and thus at higher risk for metastases. Regardless of size, any nodules with invasion are defined as neuroendocrine tumors; lesions without invasion can be regarded as neuroendocrine cell dysplasia or hyperplasia.

	Туре 1	Туре 2	Туре 3
Frequency	80-90% of cases	5-7%	10-15% of cases
Multiplicity	Multifocal	Multifocal	Solitary
Size	0.5-1.0 cm	~1.5 cm or less	Variable; one-third are larger than 2 cm
Location	Corpus	Corpus	Anywhere in stomach
Hypergastrinemia	Present	Present	Absent

Table 2. Types of Well-Differentiated Gastric Neuroendocrine Tumors

	Туре 1	Туре 2	Туре 3
Acid secretion	Low or absent	High	Normal
Association	Chronic atrophic gastritis	Multiple endocrine type 1 (MEN-1)	Sporadic
Background gastric mucosa	Enterochromaffin-like (ECL) cell hyperplasia, partial or complete loss of parietal cells, intestinal metaplasia	Parietal cell hyperplasia; ECL cell hyperplasia	Usually normal
Clinical Behavior	Usually indolent: ~100% 5-year survival	10-30% metastasize	71% of tumors >2 cm with muscularis propria and vascular invasion have lymph node metastases
Demographic Profile	70-80% are females in their 50s and 60s	Equally in males and females, mean age 50 y	More common in males, mean age 55 y

References

- 1. Borch K, Ahren B, Ahlman H, Falkmer S, Granerus G, Grimelius L. Gastric carcinoids: biologic behavior and prognosis after differentiated treatment in relation to type. *Ann Surg.* 2005;242(1):64-73.
- Graeme-Cook F. Neuroendocrine tumors of the GI tract and appendix. In: Odze RD, Goldblum JR, Crawford JM, eds. Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas. Philadelphia, PA: WB Saunders; 2004:483-504.
- 3. 6. Williams GT. Endocrine tumours of the gastrointestinal tract: selected topics. *Histopathology.* 2007;50(1):30-41.
- 4. WHO Classification of Tumours Editorial Board. *Digestive system tumours*. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1).

D. Histologic Type

The World Health Organization (WHO) classifies neuroendocrine neoplasms as well-differentiated neuroendocrine tumors (either the primary tumor or metastasis) and poorly differentiated neuroendocrine carcinomas.¹⁻⁴ Historically, well-differentiated neuroendocrine tumors have been referred to as "carcinoid" tumors, a term which may cause confusion because clinically a carcinoid tumor is a serotonin-producing tumor associated with functional manifestations of carcinoid syndrome. The use of the term "carcinoid" for neuroendocrine tumor reporting is therefore discouraged for these reasons.

Classification of neuroendocrine tumors (NETs) is based upon size, functionality, site, and invasion. Functioning tumors are those associated with clinical manifestations of hormone production or secretion of measurable amounts of active hormone; immunohistochemical demonstration of hormone production is not equivalent to clinically apparent functionality.

Although specific histologic patterns in well-differentiated neuroendocrine tumors, such as trabecular, insular, and glandular, roughly correlate with tumor location, these patterns have not been clearly shown independently to predict response to therapy or risk of nodal metastasis and are rarely reported in clinical practice. Immunohistochemistry and other ancillary techniques are generally not required to diagnose well-differentiated neuroendocrine tumors. Specific markers that may be used to establish neuroendocrine differentiation include chromogranin A, synaptophysin, and CD56.² Because of their relative sensitivity and specificity, chromogranin A and synaptophysin are recommended. Immunohistochemistry for specific hormone products, such as gastrin, may be of interest in some cases. However, immunohistochemical demonstration of hormone production does not equate with clinical functionality of the tumor.

References

 Graeme-Cook F. Neuroendocrine tumors of the GI tract and appendix. In: Odze RD, Goldblum JR, Crawford JM, eds. Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas. Philadelphia, PA: WB Saunders; 2004:483-504.

- Williams GT. Endocrine tumours of the gastrointestinal tract: selected topics. *Histopathology*. 2007;50(1):30-41.
- 3. Kloppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. *Ann N Y Acad Sci.* 2004;1014:13-27.
- 4. WHO Classification of Tumours Editorial Board. *Digestive system tumours*. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1).

E. Histologic Grade

Cytologic atypia in well-differentiated neuroendocrine tumors has no impact on clinical behavior of these tumors. The WHO classification¹ and others² use mitotic rate and/or Ki-67 index as one of the criteria for potential for aggressive behavior. Mitotic rate should be reported as number of mitoses per 2 mm², by evaluating at least 10 mm² in the most mitotically active part of the tumor. Only clearly identifiable mitotic figures should be counted; hyperchromatic, karyorrhectic, or apoptotic nuclei are excluded. Because of variations in field size, the number of high-power fields (HPF) (at 40X magnification) for 10 mm² (thereby 2 mm²) must be determined for each microscope (Table 3). For example, if using a microscope with a field diameter of 0.55 mm, count 42 HPF and divide the resulting number of mitoses by 5 to determine the number of mitoses per 2 mm² needed to assign tumor grade.

Field Diameter (mm)	Area (mm²)	Number of HPF for 10mm ²
0.40	0.125	80
0.41	0.132	75
0.42	0.139	70
0.43	0.145	69
0.44	0.152	65
0.45	0.159	63
0.46	0.166	60
0.47	0.173	58
0.48	0.181	55
0.49	0.189	53
0.50	0.196	50
0.51	0.204	49
0.52	0.212	47
0.53	0.221	45
0.54	0.229	44
0.55	0.238	42
0.56	0.246	41
0.57	0.255	39
0.58	0.264	38
0.59	0.273	37
0.60	0.283	35
0.61	0.292	34
0.62	0.302	33
0.63	0.312	32
0.64	0.322	31

Table 3. Number of HPF Required for 10 mm² Using Microscopes With Different Field Diameter

0.65	0.332	30
0.66	0.342	29
0.67	0.353	28
0.68	0.363	28
0.69	0.374	28

Ki-67 index is reported as percent positive tumor cells in area of highest nuclear labeling ("hot spot"), although the precise method of assessment has not been standardized. A number of methods have been used to assess Ki-67 index, including automatic counting and "eyeballing."^{3,4} Automated counting is not widely available and requires careful modification of the software to circumvent the inaccuracies.³ Eye-balling can be used for most tumors; however, for tumors with Ki-67 index close to grade cut-offs, it is recommended to perform the manual count on the print of camera-captured image of the hot spot. It has been recommended that a minimum of 500 tumor cells be counted to determine the Ki-67 index, and a notation is made if less cells are available. Grade assigned based on Ki-67 index is typically higher than that based on mitotic count, and the case is assigned to the higher of the 2 if both methods are performed.¹

It is important to note that there are a small group of well-differentiated neuroendocrine tumors with a Ki-67 index >20% and a mitotic rate usually <20 per 10 HPF. In WHO-2010, these tumors were considered as G3 poorly differentiated neuroendocrine carcinomas. However, they have typical morphology of well-differentiated tumors. Previous studies (most on pancreatic neuroendocrine tumors) have demonstrated that these tumors have a worse prognosis than grade 2 (Ki-67=3-20 % and mitosis <20/10 HPF) neuroendocrine tumors, but they are not as aggressive as poorly differentiated neuroendocrine carcinomas.⁵ In addition, these tumors do not have the genetic abnormalities seen in poorly differentiated neuroendocrine carcinomas.⁶ Furthermore, unlike poorly differentiated neuroendocrine carcinomas, they are less responsive to platinum-based chemotherapy.⁷ In the WHO-2019 blue book of digestive system tumors,¹ and AJCC 8th edition,⁸ those with typical morphology of well-differentiated tumors are classified as "well differentiated neuroendocrine tumor" but as grade 3 (Table 4).

Table 4

Recommended Grading System for Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Grade	Mitotic Rate (per 2mm ²)	Ki-67 index (%)
Well-differentiated neuroendocrine tumor, G1	<2	<3
Well-differentiated neuroendocrine tumor, G2	2-20	3-20
Well-differentiated neuroendocrine tumor, G3	>20	>20

References

- 1. WHO Classification of Tumours Editorial Board. *Digestive system tumours*. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1).
- Rindi G, Kloppel G, Alhman H, et al; and all other Frascati Consensus Conference participants; European Neuroendocrine Tumor Society (ENETS). TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. *Virchows Arch.* 2006;449(4):395-401.
- 3. Tang LH, Gonen M, Hedvat C, Modlin I, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of gastroenteropancreatic system: a comparison of digital image analysis with manual methods. *Am J Surg Pathol.* 2012;36(12):1761-1770.
- 4. Reid MD, Bagci P, Ohike N, Saka B, Erbarut Seven I, Dursun N et al. Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies. *Mod Pathol.* 2015;28(5):686-9411.
- 5. Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. *Semin Diagn Pathol.* 2014;31(6):498-511.
- 6. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. *Am J Surg Pathol.* 2012;36(2):173-184.
- 7. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. *Cancer.* 2014;120(18):2814-2823.

8. Amin MB, Edge SB, Greene FL, et al, eds. *AJCC Cancer Staging Manual.* 8th ed. New York, NY: Springer; 2017

F. Circumferential (Radial) Margin

For surgical resection specimens, margins include the proximal, distal, and radial margins. The radial margins represent the nonperitonealized soft tissue margins closest to the deepest penetration of tumor. In the stomach, the lesser omental (hepatoduodenal and hepatogastric ligaments) and greater omental resection margins are the only radial margins. For endoscopic resection specimens, margins include mucosal margins and the deep margin of resection. It may be helpful to mark the margin(s) closest to the tumor with ink. Margins marked by ink should be designated in the macroscopic description.

G. Pathologic Stage Classification

The TNM staging system for gastric neuroendocrine tumors of the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC) is recommended.¹

By AJCC/UICC convention, the designation "T" refers to a primary tumor that has not been previously treated. The symbol "p" refers to the pathologic classification of the TNM, as opposed to the clinical classification, and is based on gross and microscopic examination. pT entails a resection of the primary tumor or biopsy adequate to evaluate the highest pT category, pN entails removal of nodes adequate to validate lymph node metastasis, and pM implies microscopic examination of distant lesions. Clinical classification (cTNM) is usually carried out by the referring physician before treatment during initial evaluation of the patient or when pathologic classification is not possible.

Pathologic staging is usually performed after surgical resection of the primary tumor. Pathologic staging depends on pathologic documentation of the anatomic extent of disease, whether or not the primary tumor has been completely removed. If a biopsied tumor is not resected for any reason (eg, when technically unfeasible) and if the highest T and N categories or the M1 category of the tumor can be confirmed microscopically, the criteria for pathologic classification and staging have been satisfied without total removal of the primary cancer.

TNM Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

<u>The "m" suffix</u> indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

<u>The "y" prefix</u> indicates those cases in which classification is performed during or following initial multimodality therapy (ie, neoadjuvant chemotherapy, radiation therapy, or both chemotherapy and radiation therapy). The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy (ie, before initiation of neoadjuvant therapy).

<u>The "r" prefix</u> indicates a recurrent tumor when staged after a documented disease-free interval, and is identified by the "r" prefix: rTNM.

The "a" prefix designates the stage determined at autopsy: aTNM.

N Category Considerations

The specific nodal areas of the stomach are listed below.²

<u>Greater curvature of stomach</u>: Greater curvature, greater omental, gastroduodenal, gastroepiploic, pyloric, and pancreaticoduodenal

Pancreatic and splenic areas: Pancreaticolienal, peripancreatic, splenic

Lesser curvature of stomach: Lesser curvature, lesser omental, left gastric, cardioesophageal, common hepatic, celiac, and hepatoduodenal

Involvement of other intra-abdominal lymph nodes, such as retropancreatic, mesenteric, and para-aortic, is classified as distant metastasis.²

M Category Considerations

The liver is the most common metastatic site. Metastases to extrahepatic sites, such as lung, ovary, peritoneum and bone, are rare. Involvement of the celiac, para-aortic, and other nonregional lymph nodes is also considered M1 disease. In the AJCC 8th edition, M is subcategorized into M1a (hepatic only), M1b (extrahepatic only), and M1c (both hepatic and extrahepatic).

References

- 1. Amin MB, Edge SB, Greene FL, et al, eds. *AJCC Cancer Staging Manual.* 8th ed. New York, NY: Springer; 2017
- 2. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. *Am J Surg Pathol.* 2012;36(2):173-184.

H. Additional Pathologic Findings

Most gastric neuroendocrine tumors (type-I) arise in the setting of hypergastrinemia secondary to atrophic gastritis such as autoimmune gastritis (see Note B). Autoimmune gastritis may be also associated with glandular dysplasia and, in rare cases, gastric adenocarcinoma. Coagulative tumor necrosis, usually punctate, may indicate more aggressive behavior,¹ which is more commonly seen in type-III gastric neuroendocrine tumors, and should be reported.

References

1. Rindi G, Kloppel G, Alhman H, et al; and all other Frascati Consensus Conference participants; European Neuroendocrine Tumor Society (ENETS). TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. *Virchows Arch.* 2006;449(4):395-401.