Protocol for the Examination of Specimens From Patients With Hepatocellular Carcinoma

Version: Hepatocellular 4.1.0.0 Protocol Posting Date: February 2020

CAP Laboratory Accreditation Program Protocol Required Use Date: November 2020

Includes pTNM requirements from the 8th Edition, AJCC Staging Manual

For accreditation purposes, this protocol should be used for the following procedures AND tumor types:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resection</td>
<td>Includes specimens designated hepatic resection, partial or complete</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma</td>
<td>Hepatocellular carcinoma and fibrolamellar carcinoma</td>
</tr>
</tbody>
</table>

This protocol is NOT required for accreditation purposes for the following:

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy</td>
</tr>
<tr>
<td>Primary resection specimen with no residual cancer (eg, following presurgical therapy)</td>
</tr>
<tr>
<td>Cytologic specimens</td>
</tr>
</tbody>
</table>

The following tumor types should NOT be reported using this protocol:

<table>
<thead>
<tr>
<th>Tumor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorly differentiated neuroendocrine carcinoma (consider the Intrahepatic Bile Ducts protocol)</td>
</tr>
<tr>
<td>Well-differentiated neuroendocrine tumor</td>
</tr>
<tr>
<td>Hepatoblastoma (consider the Hepatoblastoma protocol)</td>
</tr>
<tr>
<td>Lymphoma (consider the Hodgkin or non-Hodgkin Lymphoma protocols)</td>
</tr>
<tr>
<td>Sarcoma (consider the Soft Tissue protocol)</td>
</tr>
</tbody>
</table>

Authors

Lawrence J. Burgart, MD*; Chanjuan Shi, MD, PhD*; Patrick L. Fitzgibbons, MD; Wendy L. Frankel, MD; Sanjay Kakar, MD; Alyssa M. Krasinskas, MD; Mari Mino-Kenudson, MD; Timothy Pawlik, MD, MPH, PhD; Jean-Nicolas Vauthey, MD; Mary K. Washington, MD, PhD

With guidance from the CAP Cancer and CAP Pathology Electronic Reporting Committees.

* Denotes primary author. All other contributing authors are listed alphabetically.
Accreditation Requirements
This protocol can be utilized for a variety of procedures and tumor types for clinical care purposes. For accreditation purposes, only the definitive primary cancer resection specimen is required to have the core and conditional data elements reported in a synoptic format.

- **Core data elements** are required in reports to adequately describe appropriate malignancies. For accreditation purposes, essential data elements must be reported in all instances, even if the response is “not applicable” or “cannot be determined.”
- **Conditional data elements** are only required to be reported if applicable as delineated in the protocol. For instance, the total number of lymph nodes examined must be reported, but only if nodes are present in the specimen.
- **Optional data elements** are identified with “+” and although not required for CAP accreditation purposes, may be considered for reporting as determined by local practice standards.

The use of this protocol is not required for recurrent tumors or for metastatic tumors that are resected at a different time than the primary tumor. Use of this protocol is also not required for pathology reviews performed at a second institution (ie, secondary consultation, second opinion, or review of outside case at second institution).

Synoptic Reporting
All core and conditionally required data elements outlined on the surgical case summary from this cancer protocol must be displayed in synoptic report format. Synoptic format is defined as:

- Data element: followed by its answer (response), outline format without the paired “Data element: Response” format is NOT considered synoptic.
- The data element should be represented in the report as it is listed in the case summary. The response for any data element may be modified from those listed in the case summary, including “Cannot be determined” if appropriate.
- Each diagnostic parameter pair (Data element: Response) is listed on a separate line or in a tabular format to achieve visual separation. The following exceptions are allowed to be listed on one line:
 - Anatomic site or specimen, laterality, and procedure
 - Pathologic Stage Classification (pTNM) elements
 - Negative margins, as long as all negative margins are specifically enumerated where applicable
- The synoptic portion of the report can appear in the diagnosis section of the pathology report, at the end of the report or in a separate section, but all Data element: Responses must be listed together in one location Organizations and pathologists may choose to list the required elements in any order, use additional methods in order to enhance or achieve visual separation, or add optional items within the synoptic report. The report may have required elements in a summary format elsewhere in the report IN ADDITION TO but not as replacement for the synoptic report ie, all required elements must be in the synoptic portion of the report in the format defined above.

Summary of Changes
Version 4.1.0.0
Histologic Type (WHO 2019)
Surgical Pathology Cancer Case Summary

Protocol posting date: February 2020

HEPATOCELLULAR CARCINOMA:

Select a single response unless otherwise indicated.

Procedure (select all that apply) (Note A)

- ___ Wedge resection
- ___ Partial hepatectomy
 + ___ Major hepatectomy (3 segments or more)
 + ___ Minor hepatectomy (less than 3 segments)
- ___ Total hepatectomy
- ___ Other (specify): ____________________________
- ____ Not specified

TUMOR CHARACTERISTICS (Note B)

Tumor Focality

- ___ Solitary
- ___ Multiple

For multiple tumors, repeat the following 4 elements (Tumor Site, Tumor Size, Treatment Effect, and Satellitosis) for up to 5 largest tumor nodules

Tumor Site

- ___ Right lobe
- ___ Left lobe
- ___ Caudate lobe
- ___ Quadrate lobe
- ___ Segmental location (specify): ____________________________
- ___ Other (specify): ____________________________

Tumor Size

- Greatest dimension of viable tumor (centimeters): ___ cm
 + Additional dimensions (centimeters): ___ x ___ cm
 + Greatest dimension of tumor on gross exam (centimeters): ___ cm

Treatment Effect

- ___ No known presurgical therapy
- ___ Complete necrosis (no viable tumor)
- ___ Incomplete necrosis (viable tumor present)
 + Percentage tumor necrosis: ____%
- ____ No necrosis
- ___ Cannot be determined (explain): ____________________________

+ Satellitosis
 + ___ Not identified
 + ___ Present
 + ___ Cannot be determined

Histologic Type (Note C)

- ___ Hepatocellular carcinoma
- ___ Hepatocellular carcinoma, fibrolamellar

+ Data elements preceded by this symbol are not required for accreditation purposes. These optional elements may be clinically important but are not yet validated or regularly used in patient management.
___ Hepatocellular carcinoma, scirrhous
___ Hepatocellular carcinoma, clear cell type
___ Hepatoblastoma
___ Other histologic type not listed (specify): ___________________________
___ Carcinoma, type cannot be determined

Histologic Grade (Note D)
Note: For multiple tumors, select the worst grade.
___ G1: Well differentiated
___ G2: Moderately differentiated
___ G3: Poorly differentiated
___ G4: Undifferentiated
___ Other (specify): ___________________________
___ GX: Cannot be assessed
___ Not applicable

Tumor Extension (select all that apply)
___ No evidence of primary tumor
___ Tumor confined to liver
___ Tumor involves a major branch of the portal vein
___ Tumor involves hepatic vein(s)
___ Tumor involves (perforates) visceral peritoneum
___ Tumor directly invades gallbladder
___ Tumor directly invades diaphragm
___ Tumor directly invades other adjacent organs (specify): ___________________________
___ Cannot be assessed

Margins (Note E)
Parenchymal Margin
___ Cannot be assessed
___ Uninvolved by invasive carcinoma
 Distance of invasive carcinoma from margin (millimeters or centimeters): ___ mm or ___ cm
___ Involved by invasive carcinoma
___ Not applicable

Other Margin (required only if applicable)
Specify margin: ___________________________
___ Cannot be assessed
___ Uninvolved by invasive carcinoma
___ Involved by invasive carcinoma

Vascular Invasion (Note F)
___ Not identified
___ Present
 + ___ Small vessel invasion
 + ___ Large vessel invasion (major branch of hepatic vein or portal vein)
 + Specify tumor nodule(s) (if applicable): ___________________________
___ Cannot be determined

Perineural Invasion
___ Not identified
___ Present
 + Specify tumor nodule(s) (if applicable): ___________________________
___ Cannot be determined

+ Data elements preceded by this symbol are not required for accreditation purposes. These optional elements may be clinically important but are not yet validated or regularly used in patient management.
Regional Lymph Nodes

___ No lymph nodes submitted or found

Lymph Node Examination (required only if lymph nodes are present in the specimen)

Number of Lymph Nodes Involved: ___
___ Number cannot be determined (explain): ________________________

Number of Lymph Nodes Examined: ___
___ Number cannot be determined (explain): ________________________

Pathologic Stage Classification (pTNM, AJCC 8th Edition) (Note G)

Note: Reporting of pT, pN, and (when applicable) pM categories is based on information available to the pathologist at the time the report is issued. Only the applicable T, N, or M category is required for reporting; their definitions need not be included in the report. The categories (with modifiers when applicable) can be listed on 1 line or more than 1 line.

TNM Descriptors (required only if applicable) (select all that apply)
___ m (multiple primary tumors)
___ r (recurrent)
___ y (posttreatment)

Primary Tumor (pT)
___ pTX: Primary tumor cannot be assessed
___ pT0: No evidence of primary tumor
___ pT1: Solitary tumor ≤2 cm, or >2 cm without vascular invasion
___ pT1a: Solitary tumor ≤2 cm
___ pT1b: Solitary tumor >2 cm without vascular invasion
___ pT2: Solitary tumor >2 cm with vascular invasion, or multiple tumors, none >5 cm
___ pT3: Multiple tumors, at least one of which is >5 cm
___ pT4: Single tumor or multiple tumors of any size involving a major branch of the portal vein or hepatic vein, or tumor(s) with direct invasion of adjacent organs other than the gallbladder or with perforation of visceral peritoneum

Regional Lymph Nodes (pN)
___ pNX: Regional lymph nodes cannot be assessed
___ pN0: No regional lymph node metastasis
___ pN1: Regional lymph node metastasis

Distant Metastasis (pM) (required only if confirmed pathologically in this case)
___ pM1: Distant metastasis
___ Specify site(s), if known: ____________________________

+ Additional Pathologic Findings (select all that apply) (Note H)
+ ___ None identified
+ ___ Fibrosis (specify extent, providing name of the scheme and assessment scale used): ____________________________
+ ___ Cirrhosis
+ ___ Low-grade dysplastic nodule
+ ___ High-grade dysplastic nodule
+ ___ Steatosis
+ ___ Steatohepatitis
+ ___ Iron overload
+ ___ Chronic hepatitis (specify etiology): ____________________________
+ ___ Other (specify): ____________________________

+ Data elements preceded by this symbol are not required for accreditation purposes. These optional elements may be clinically important but are not yet validated or regularly used in patient management.
+ Ancillary Studies
+ Specify: ___________________________________

+ Comment(s)
Explanatory Notes

A. Application
This protocol applies only to hepatic resection specimens containing hepatocellular carcinoma including fibrolamellar carcinoma. Carcinomas of the intrahepatic bile ducts (cholangiocarcinomas) are staged using a separate TNM system.1 This scheme is also not used for combined HCC-cholangiocarcinoma, sarcomas, and metastatic tumors.

References

B. Tumor Characteristics: Location, Focality, Histologic Sampling, Response to Therapy
The segmental anatomy of the liver is shown in Figure 1. Although these divisions are useful for anatomic localization of tumors, it is often not possible to assign segmental location on resection specimens, and such information is best provided by the surgeon. Tumor location can be recorded as right or left lobe, and more specific information about the segmental location can be included if provided.

Figure 1. Segmental anatomy of the liver. From Greene et al.1 Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Atlas (2006) published by Springer Science and Business Media LLC, www.springerlink.com.

Sections should be prepared from each major tumor nodule, with representative sampling of smaller nodules. For multiple tumors, size and pathologic parameters can be provided for the five largest tumors, while size range and location can be provided for the rest. If there are differences in tumor characteristics such as differentiation, satellitosis, lymphovascular invasion, margin status, etc, in individual tumor nodules, this can be recorded using optional features in the synoptic. Further details about any differences in tumor nodules can be added as a separate comment, if necessary. Cirrhotic nodules appreciably larger than the surrounding background liver should also be sampled, because such nodules may harbor dysplastic changes.2 For purposes of staging, satellite nodules, multifocal primary hepatocellular carcinomas, and intrahepatic metastases are considered to be multiple tumors.

For tumors treated with radiofrequency ablation or transarterial chemo-embolization, the extent of necrosis on pathologic evaluation can provide valuable for correlation with down-staging observed on imaging.3 The extent of necrosis that would correlate with outcome is not known.4 Hence there are no definite guidelines for pathologic assessment of the specimen and how to assess the extent of necrosis. The entire tumor should be examined microscopically, when possible, especially for tumors up to 2 cm. For larger tumors, an additional section for each
1 cm is recommended, with additional sampling as necessary from the periphery of the tumor or areas that appear viable. The overall extent of necrosis is determined by a combination of gross and microscopic findings, and should be reported in up to 5 of the largest tumour nodules. Both gross size and size of viable tumor for each focus (up to 5) can be provided, and only size of viable tumor should be used for staging.

The United Network for Organ Sharing (UNOS) requires reporting of satellite HCC lesions in explanted livers. There is no universally accepted definition for satellitosis, and different criteria have been used in different studies. The definition suggested by International Collaboration on Cancer Reporting (ICCR) is recommended: HCC nodule smaller than the primary tumor, within 2 cm of the primary tumor, but separated by nontumor tissue. Tumor within a vascular structure should be categorized as lymphatic/vascular invasion and not as satellitosis.

References

C. Histologic Type
The protocol recommends the following modified classification of the World Health Organization (WHO). In the United States, almost 70% of the primary malignant tumors of the liver are hepatocellular carcinomas.

Fibrolamellar carcinoma has distinct morphologic features and occurs predominantly in young adults. CK7 and CD68 are positive in nearly all fibrolamellar carcinomas but are not specific as a subset of classical HCC can be positive for these markers. Earlier studies reported a relatively favorable outcome of fibrolamellar carcinoma compared to HCC, but several recent studies have shown that the outcome is similar to classical HCC in noncirrhotic liver. Recently, a ~400 bp deletion on chromosome 19 has been described in fibrolamellar carcinoma, which leads to fusion of DNAJB1 and PRKACA genes, and a novel DNAJB1-PRKACA fusion transcript. This can be detected by reverse transcription polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization (FISH) break-apart probes. This alteration is seen in 80% to 100% of FLM cases and has not been reported in classical HCC. For cases showing borderline features of fibrolamellar carcinoma, the diagnosis can be confirmed by 1 of these molecular techniques. Scirrhous and sarcomatoid HCC are separately listed in the AJCC 8th edition but are considered histologic variants of HCC and not as distinct entities in the WHO 2010 classification.

References
D. Histologic Grade

Grading of Hepatocellular Carcinoma
A variety of grading systems including Edmondson and Steiner\(^1\) and WHO 2010 scheme\(^2\) have been advocated. The former is based on nuclear features, while the latter is based on differentiation. *AJCC Cancer Staging Manual, 8th edition*\(^3\) advocates a 4-tier grading scheme:

- **G1:** Well-differentiated
- **G2:** Moderately differentiated
- **G3:** Poorly differentiated
- **G4:** Undifferentiated

Well-differentiated tumors closely resemble normal liver and have minimal to mild cytologic atypia, limited reticulin loss and relatively thin cell plates. Moderately differentiated HCC show thick cell plates with mild to moderate nuclear atypia and more prominent loss of reticulin. Poorly differentiated tumors show marked nuclear atypia and/or high mitotic activity; the hepatocellular nature in some of these tumors may not be clearly evident on morphology. Undifferentiated category is rarely used and is reserved for tumors that do not show obvious hepatocellular or other differentiation on morphology or immunohistochemistry. It is more appropriate to categorize these as undifferentiated carcinomas rather than a subgroup of HCC. This protocol does not preclude the use of other grading systems. The grading system used should be specified.

Histologic grade has been shown to have a relationship to tumor size, tumor presentation, and metastatic rate.\(^4\) Grade has been shown to be an independent predictor of outcome in many studies.\(^5,6\)

References

E. Margins

The evaluation of margins for total or partial hepatectomy specimens depends on the method and extent of resection. It is recommended that the surgeon be consulted to determine the critical foci within the margins that require microscopic evaluation. The transection margin of a partial hepatectomy may be large, rendering it impractical for complete examination. In this setting, grossly positive margins should be microscopically confirmed and documented. If the margins are grossly free of tumor, judicious sampling of the cut surface in the region closest to the nearest identified tumor nodule is indicated. In selected cases, adequate random sampling of the cut surface may be sufficient. If the neoplasm is found near the surgical margin, the distance from the margin should be reported. For multiple tumors, the distance from the nearest tumor should be reported. Tumor within 1 mm of the resection margin may have increased risk of recurrence,\(^1,2\) but several studies have reported that a minimal surgical margin in the liver is sufficient for HCC.\(^3\)

References

F. Venous and Small Vessel Invasion

Vascular invasion includes gross as well as microscopic invasion of vessels. Macroscopic venous invasion is generally accompanied by microscopic invasion. Both are associated with lower survival post resection. Larger tumors (greater than 5 cm) or multiple tumors are more likely to exhibit vascular invasion than single small lesions. The presence of a portal vein tumor thrombus should be included in the report due to its adverse impact on outcome.

Microscopic vascular invasion is defined by tumor within a vascular space lined by endothelium, identified only on microscopy in the capsule or noncapsular fibrous septa, or liver tissue surrounding the tumor. Attachment of the tumor to vessel wall or presence of smooth muscle/elastic lamina (for larger vessels) helps in confirming vascular invasion. Elastic stain or immunohistochemistry for smooth muscle can be helpful in challenging situations, but their routine use is not advocated. The outcome may be worse with increasing number of foci with lymph-vascular invasion (LVI), but further subclassification based on extent of LVI is not supported by current data.

References

G. Pathologic Stage Classification

The TNM staging system of the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC) applies to hepatocellular carcinomas. It does not apply to hepatic sarcomas or to metastatic tumors of the liver. The T classification depends on the number of tumor nodules, the size of the largest nodule, and the presence or absence of blood vessel invasion. The TNM classification does not discriminate between multiple independent primary tumors or intrahepatic metastasis from a single primary hepatic carcinoma. Vascular invasion includes either the gross or the histologic involvement of vessels. Portal vein invasion is an important adverse prognostic factor and should be reported.

According to AJCC/UICC convention, the designation "T" refers to a primary tumor that has not been previously treated. The symbol "p" refers to the pathologic classification of the TNM, as opposed to the clinical classification, and is based on gross and microscopic examination. pT entails a resection of the primary tumor or biopsy adequate to evaluate the highest pT category, pN entails removal of nodes adequate to validate lymph node metastasis, and pM implies microscopic examination of distant lesions. Clinical classification (cTNM) is usually carried out by the referring physician before treatment during initial evaluation of the patient or when pathologic classification is not possible.

Pathologic staging is usually performed after surgical resection of the primary tumor. Pathologic staging depends on pathologic documentation of the anatomic extent of disease, whether or not the primary tumor has been completely removed. If a biopsied tumor is not resected for any reason (eg, when technically infeasible) and if the highest T and N categories or the M1 category of the tumor can be confirmed microscopically, the criteria for pathologic classification and staging have been satisfied without total removal of the primary cancer.
The T categories for HCC are based on tumor size, number and vascular invasion. Since some studies showed lack of adverse prognostic impact of vascular invasion in tumors less than 2 cm, these tumors have been classified under the T1 category. For treated tumors, the size of the viable tumor used for assigning the T category. Tumors with major vascular invasion are now categorized as T4 as they have a similar outcome compared to T4 tumors defined by extrahepatic or peritoneal involvement. Major vascular invasion is defined by involvement of branches of main portal vein (right or left, excluding sectoral and segmental branches), hepatic veins (right, middle or left) or main branches of hepatic artery (right or left). Involvement of falciform or other ligaments is not considered T4, and should be categorized as T1-T3 based on other parameters. Direct invasion into diaphragm is considered as T4.

TNM Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

The "m" suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

The “y” prefix indicates those cases in which classification is performed during or after initial multimodality therapy (ie, neoadjuvant chemotherapy, radiation therapy, or both chemotherapy and radiation therapy). The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor before multimodality therapy (ie, before initiation of neoadjuvant therapy).

The “r” prefix indicates a recurrent tumor when staged after a documented disease-free interval and is identified by the “r” prefix: rTNM.

The “a” prefix designates the stage determined at autopsy: aTNM.

T Category Considerations
T categories are illustrated in Figures 2 through 5.

Figure 2. T1 is defined as a solitary tumor ≤2 cm irrespective of vascular invasion or >2 cm without vascular invasion. From Greene et al. Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Atlas (2006) published by Springer Science and Business Media LLC, www.springerlink.com.
Figure 3. A. Solitary tumors >2 cm with vascular invasion are classified as T2. B. Multiple tumors, none measuring 5 cm or greater in greatest dimension, are also classified as T2. From Greene et al.4 Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Atlas (2006) published by Springer Science and Business Media LLC, www.springerlink.com.

Figure 4. A. Multiple tumors, any more than 5 cm, are classified as T3. B. Tumor involving a major branch of the portal or hepatic vein(s) is classified as T4. From Greene et al.4 Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Atlas (2006) published by Springer Science and Business Media LLC, www.springerlink.com.
Figure 5. Tumor with direct invasion of adjacent organs other than gallbladder or with perforation of the visceral peritoneum is also classified as T4. From Greene et al.4 Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Atlas (2006) published by Springer Science and Business Media LLC, www.springerlink.com.

Lymph Nodes
The regional lymph nodes for the liver include hilar, hepatoduodenal ligament, inferior phrenic, caval, common hepatic artery and portal vein lymph nodes.

References

H. Additional Pathologic Findings
Fibrosis
The extent of fibrosis should be reported because cirrhosis or advanced fibrosis have an adverse effect on outcome.1 The scoring system described by Ishak2 is recommended by the AJCC Cancer Staging Manual, 8th edition,3 but other commonly used schemes (Batts-Ludwig, Metavir) can be used. The name of the staging scheme and its scale should be included.

Dysplastic Nodules
High-grade dysplastic nodules are considered to be the precursors of hepatocellular carcinoma. The criteria outlined by the International Working Party are recommended,4 although difficulties in assessment of these lesions and variation in interobserver agreement are recognized. Low-grade dysplastic nodules are difficult or impossible to distinguish from large regenerative nodules, and their inclusion in the report is not necessary.

Hepatocellular Adenomas
In noncirrhotic liver, hepatocellular carcinoma may arise in hepatocellular adenoma. In this setting, the size of the hepatocellular adenoma and the hepatocellular carcinoma should both be conveyed in the report. Only the hepatocellular carcinoma size is used for staging purposes. Subtyping of hepatocellular adenoma can be considered but is not required.

Underlying Liver Disease
Specific types of underlying disease, such as viral hepatitis or hemochromatosis, should be evaluated and assigned a grade and stage, if appropriate.
References